

1. General description

The SSL2103 is a Switched Mode Power Supply (SMPS) controller IC that operates in combination with a phase cut dimmer directly from the rectified mains. It is designed to drive LED devices. The device includes a circuit to allow direct start-up from the rectified mains voltage.

For dimmer applications, an integrated dedicated circuitry optimizes the dimming curve.

- SSL2101: fully integrated LED driver for lamps up to 10 W
- SSL2102: fully integrated LED driver for lamps up to 25 W
- SSL2103: gives the application designer flexibility to:
 - Use an external power switch to allow the IC to provide any power
 - Use an external bleeder transistors to provide extended dimmer interoperability

2. Features and benefits

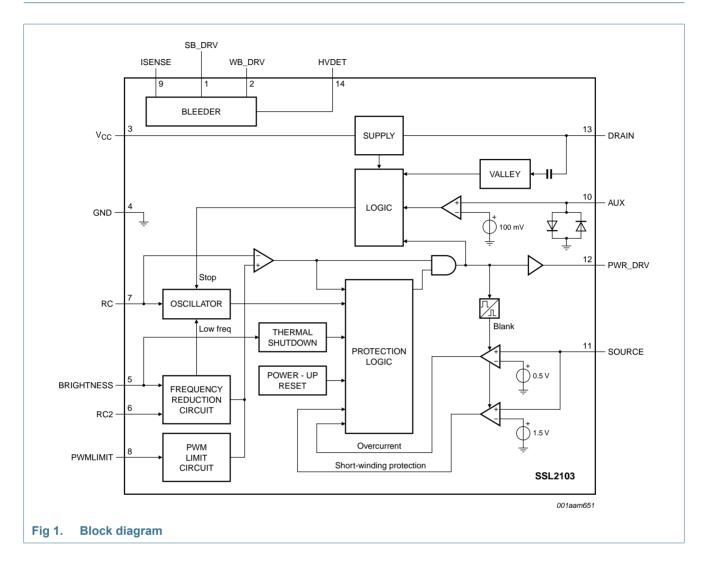
- Easy migration to existing lighting control infrastructure
- Supports most available dimming solutions
- Optimized efficiency with valley switching managed by a built-in circuitry
- Demagnetization detection
- OverTemperature Protection (OTP)
- Short-Winding Protection (SWP) and OverCurrent Protection (OCP)
- Internal V_{CC} generation allowing start-up from the rectified mains voltage
- Natural dimming curve by logarithmic correction, down to 1 %
- Suitable for flyback and buck applications

3. Applications

- SSL applications with various power requirements
- LED modules such as LED spots and down-lights
- LED strings suitable for retail displays, etc.

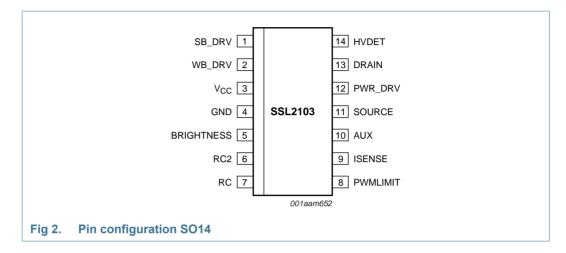
4. Quick reference data

Table 1.	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC}	supply voltage	$V_{DRAIN} > 60 V$	^[1] 12	20	28	V
f _{osc}	oscillator frequency		10	100	130	kHz
I _{DRAIN}	current on pin DRAIN	V _{DRAIN} > 60 V; with auxiliary supply	-	30	125	μA
δ_{min}	minimum duty factor		-	0	-	%
δ_{max}	maximum duty cycle	PWMLIMIT= 3 V	-	75	-	%
T _{amb}	ambient temperature		-40	-	+100	°C


[1] V_{CC} = 20 V minimum to meet all characteristics.

5. Ordering information

Table 2.Ordering information


Type number	Package						
	Name	Description	Version				
SSL2103T	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1				

6. Block diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3. Pin description

Table J. FIII	uesch	puon
Symbol	Pin	Description
SB_DRV	1	strong bleeder switch drive
WB_DRV	2	weak bleeder switch drive
V _{CC}	3	supply voltage
GND	4	ground
BRIGHTNESS	5	brightness input
RC2	6	setting for frequency reduction
RC	7	frequency setting
PWMLIMIT	8	PWM limit input
ISENSE	9	current sense input for WBLEED
AUX	10	input for voltage from auxiliary winding for timing (demagnetization)
SOURCE	11	current sense input of external power switch
PWR_DRV	12	power switch drive
DRAIN	13	drain of external power switch; input for start-up current and valley sensing
HVDET	14	input for high voltage sensing

8. Functional description

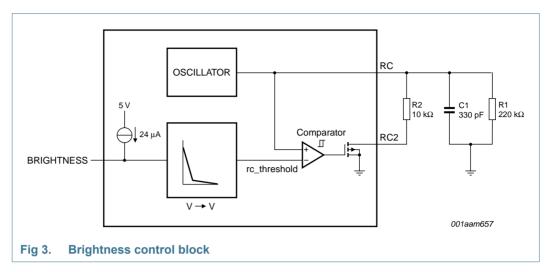
The SSL2103 is an LED driver IC that operates directly from the rectified mains. The SSL2103 uses on-time mode control and frequency control to control the LED brightness. The BRIGHTNESS and PWMLIMIT input of the IC can be used to control the LED light output in combination with an external dimmer. The PWMLIMIT input can also be used for Thermal Lumen Management (TLM) and for precision LED current control.

8.1 Start-up and Under Voltage Lock Out (UVLO)

Initially, the IC is self-supplying from the rectified mains voltage. The IC starts switching as soon as the voltage on pin V_{CC} passes the $V_{CC(startup)}$ level. The supply can be taken over by the auxiliary winding of the transformer as soon as V_{CC} is high enough and the supply from the line is stopped for high efficiency operation. Alternatively the IC can be supplied via a bleeder resistor connected to a high voltage.

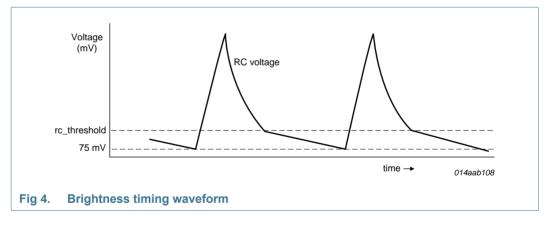
Remark: The maximum V_{CC} voltage rating of the IC must be considered.

8.2 Oscillator


An oscillator inside the IC provides the timing for the switching converter logic.

The frequency of the oscillator is set by the external resistors and the capacitor on pin RC and pin RC2. The external capacitor is charged rapidly to the $V_{RC(max)}$ level and, starting from a new primary stroke, discharges to the $V_{RC(min)}$ level. Because the discharge is exponential, the relative sensitivity of the duty factor to the regulation voltage at low duty factor, is almost equal to the sensitivity at high duty factors. This results in a more constant gain over the duty factor range, compared to Pulse Width Modulated (PWM) systems with a linear sawtooth oscillator. Stable operation at low duty factors is easily achieved. The frequency of the converter when $V_{BRIGHTNESS}$ is high can be calculated using Equation 1:

$$RC = \frac{1}{3.5} \cdot \left(\frac{1}{f_{osc}} - t_{charge}\right) \tag{1}$$

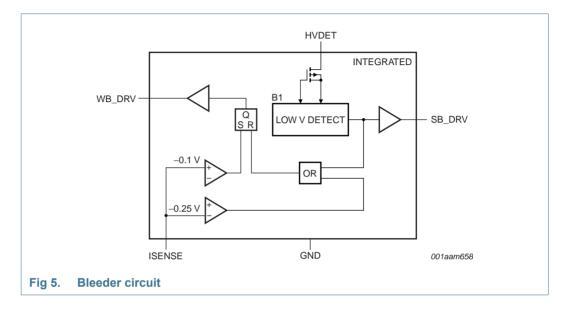

R equals the parallel resistance of both oscillator resistors. C is the capacitor connected at the RC pin (pin 7).

The BRIGHTNESS input controls the frequency reduction mode. Figure 3 shows that the oscillator switches over from an RC curve with R1/R2, to R1 only. A low BRIGHTNESS voltage will reduce the switching frequency.

A typical RC waveform is shown in <u>Figure 4</u>. The RC switch-over threshold is controlled by the BRIGHTNESS pin.

To ensure that the capacitor can be charged within the charge time, the value of the oscillator capacitor should be limited to 1 nF. Due to leakage current, the value of the resistor connected between the RC pin and the ground should be limited to a maximum of 220 k Ω .

8.3 Duty factor control


The duty factor is controlled by an internally regulated voltage and the oscillator signal on pin RC. The internal regulation voltage is set by the voltage on the PWMLIMIT pin.

A low PWMLIMIT voltage will results in a low on-time for the external power switch. The minimum duty factor of the switched mode power supply can be set to 0 %. The maximum duty factor is set to 75 %.

8.4 Bleeder for dimming applications

The SSL2103 IC contains some circuitry intended for mains dimmer compatibility. This circuitry can drive two external current sinks, called bleeders. A strong bleeder is used for zero-cross reset of the dimmer and TRIAC latching. A weak bleeder is added to maintain the hold current through the dimmer.

The SB_DRV output is activated when the maximum voltage on pin HVDET is below the V_{th(SBLEED)} level (52 V typically). The WB_DRV output is activated as soon as the voltage on pin ISENSE exceeds the V_{th(high)(ISENSE)} level (–100 mV typically). The WB_DRV output is deactivated when the ISENSE voltage drops below the V_{th(low)(ISENSE)} level (–250 mV typically). The WB_DRV output is also deactivated when the strong bleeder switch is switched on. See Figure 5.

8.5 Valley switching

A new cycle is started when the primary switch is switched on (see <u>Figure 6</u>). After a time determined by the oscillator voltage, RC and the internal regulation level, the switch is turned off and the secondary stroke starts. The internal regulation level is determined by the voltage on pin PWMLIMIT.

After the secondary stroke, the drain voltage shows an oscillation with a frequency of approximately:

$$\frac{l}{2 \times \pi \times \sqrt{(L_p \times C_p)}} \tag{2}$$

where:

 L_p = primary self inductance

C_p = parasitic capacitance on drain node

As soon as the oscillator voltage is high again and the secondary stroke has ended, the circuit waits for a low drain voltage before starting a new primary stroke.

Figure 6 shows the drain voltage together with the valley signal, the signal indicating the secondary stroke and the RC voltage.

The primary stroke starts some time before the actual valley at low ringing frequencies, and some time after the actual valley at high ringing frequencies.

SSL2103

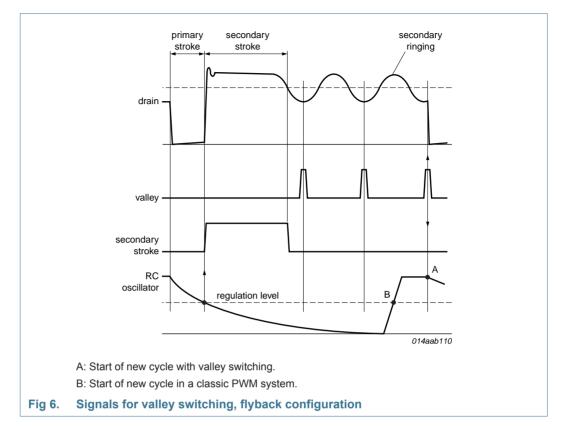
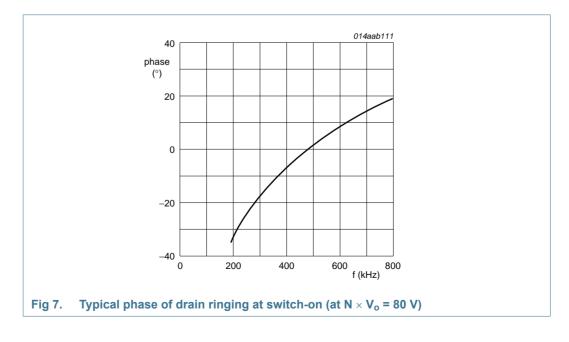



Figure 7 shows a typical curve for a reflected output voltage N at an output voltage of 80 V. This voltage is the output voltage transferred to the primary side of the transformer with the factor N (determined by the turns ratio of the transformer). It shows that the system switches exactly at minimum drain voltage for ringing frequencies of 480 kHz, thus reducing the switch-on losses to a minimum. At 130 kHz, the next primary stroke is started at 33° before the valley. The switch-on losses are still reduced significantly.

8.6 Demagnetization

The system operates in discontinuous conduction mode if the AUX pin is connected. As long as the secondary stroke has not ended, the oscillator will not start a new primary stroke. During the first $t_{sup(xfmr_ring)}$ seconds, demagnetization recognition is suppressed. This suppression may be necessary in applications where the transformer has a large leakage inductance and at low output voltages.

8.7 Overcurrent protection

The cycle-by-cycle peak drain current limit circuit uses the external source resistor R_{SENSE} to measure the current. The circuit is activated after the leading edge blanking time t_{leb} . The protection circuit limits the source voltage over the $R_{SENSE}{}^1$ resistor to $V_{th(ocp)SOURCE}$, and thus limits the primary peak current.

8.8 Short-winding protection

The short-winding protection circuit is also activated after the leading edge blanking time. If the source voltage exceeds the short-winding protection threshold voltage $V_{th(swp)SOURCE}$, the IC stops switching. Only a power-on reset will restart normal operation. The short-winding protection also protects in case of a secondary diode short circuit.

8.9 Overtemperature protection

Accurate temperature protection is provided in the device. When the junction temperature exceeds the thermal shut-down temperature, the IC stops switching. During thermal protection, the IC current is lowered to the start-up current. The IC continues normal operation as soon as the overtemperature situation has disappeared.

^{1.} R_{SENSE} is the resistor between the SOURCE pin and GND

9. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are measured with respect to ground; positive currents flow into the device.

Symbol	Parameter	Conditions		Min	Max	Unit
Voltages						
V _{CC}	supply voltage	continuous	<u>[1]</u>	-0.4	+28	V
V _{RC}	voltage on pin RC		[1]	-0.4	+3	V
V _{RC2}	voltage on pin RC2			-0.4	+3	V
VBRIGHTNESS	voltage on pin BRIGHTNESS			-0.4	+5	V
V _{PWMLIMIT}	voltage on pin PWMLIMIT			-0.4	+5	V
V _{SOURCE}	voltage on pin SOURCE			-0.4	+5	V
V _{DRAIN}	voltage on pin DRAIN	T _{amb} = 25 °C		-0.4	+600	V
V _{HVDET}	voltage on pin HVDET	T _{amb} = 25 °C		-0.4	+600	V
Currents						
IISENSE	current on pin ISENSE		[2]	-20	+5	mA
I _{AUX}	current on pin AUX		[2]	-10	+5	mA
I _{SB_DRV}	current on pin SB_DRV				+3.6	mA
I _{WB_DRV}	current on pin WB_DRV				+3.6	mA
General						
P _{tot}	total power dissipation	T _{amb} = 70 °C		-	250	mW
T _{stg}	storage temperature			-55	+150	°C
T _{amb}	ambient temperature			-40	+100	°C
Tj	junction temperature			-40	+150	°C
V _{ESD}	electrostatic discharge voltage	human body model;	[3]			
		Pins 13 and 14		-1000	+1000	V
		All other pins		-2000	+2000	V
		charged device model	[4]	-500	+500	V

[1] Pins V_{CC} and RC cannot be current driven.

[2] Pins ISENSE and AUX cannot be voltage driven.

[3] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.

[4] Charged device model: equivalent to charging the IC up to 1 kV and the subsequent discharging of each pin down to 0 V over a 1 Ω resistor.

10. Thermal characteristics

Table 5.Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air, on JESD51-3 board	123	K/W
Ψ_{j-top}	thermal characterization parameter from junction to top	in free air, on JESD51-3 board	7	K/W

11. Characteristics

Table 6. Characteristics

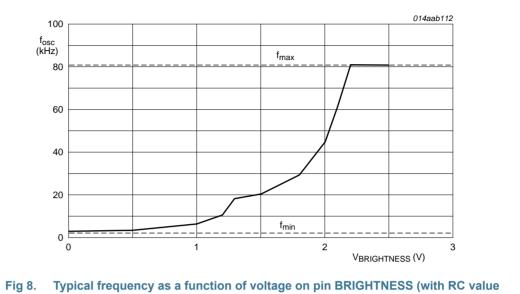
 T_{amb} = 25 °C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC; V_{CC} = 20 V and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
Supply							
I _{CC}	supply current	normal operation; bleeders disconnected; V _{DRAIN} = 60 V;		-	1.8	-	mA
I _{CC(ch)}	charge supply current	$V_{DRAIN} > 60$ V; V_{CC} = 0 V		-6	-4.5	-	mA
V _{CC}	supply voltage	$V_{DRAIN} > 60 V$	[1]	12	20	28	V
V _{CC(startup)}	start-up supply voltage			-	10.25	-	V
V _{CC(UVLO)}	undervoltage lockout supply voltage			-	8.2	-	V
I _{DRAIN}	current on pin DRAIN	$V_{DRAIN} > 60$ V; with auxiliary supply		-	30	125	μA
V _{DRAIN}	voltage on pin DRAIN			40	-	600	V
Pulse width mod	lulator						
δ_{min}	minimum duty factor			-	0	-	%
δ _{max}	maximum duty cycle	PWMLIMIT= 3 V		-	75	-	%
SOPS							
V _{det(demag)}	demagnetization detection voltage			50	100	150	mV
t _{sup(xfmr_ring)}	transformer ringing suppression time	at start of secondary stroke		1.0	1.5	2.0	μS
RC oscillator							
V _{RC(min)}	minimum voltage on pin RC			60	75	90	mV
V _{RC(max)}	maximum voltage on pin RC			2.4	2.5	2.6	V
t _{ch(RC)}	charge time on pin RC			-	1	-	μS
f _{osc}	oscillator frequency			10	100	130	kHz
I BRIGHTNESS	current on pin BRIGHTNESS	V _{BRIGHTNESS} = 0 V		-20	-24	-28	μA
Driver bleeder							
V _{th(HVDET)}	threshold voltage on pin HVDET			46	52	56	V
V _{th(low)} ISENSE	low threshold voltage on pin ISENSE			-	-250	-	mV
$V_{th(high)ISENSE}$	high threshold voltage on pin ISENSE			-	-100	-	mV
I _{SB_DRV}	current on pin SB_DRV	$V_{SB_{DRV}} < 9 V$		-	3.2	3.6	mA
I _{WB_DRV}	current on pin WB_DRV	$V_{WB_{DRV}} < 9 V$		-	3.2	3.6	mA
V _{SB_DRV}	voltage on pin SB_DRV	$I_{SB_{DRV}} = 0$		-	-	12	V
		$I_{SB_{DRV}} = 2.5 \text{ mA}$		-	10	-	V
		during V _{CC} start-up; I _{SB_DRV} = 2.5 mA	[2]	5.5	-	-	V
V _{WB_DRV}	voltage on pin WB_DRV	$I_{WB_DRV} = 0$		-	-	12	V
		$I_{WB_{DRV}} = 2.5 \text{ mA}$		-	10	-	V

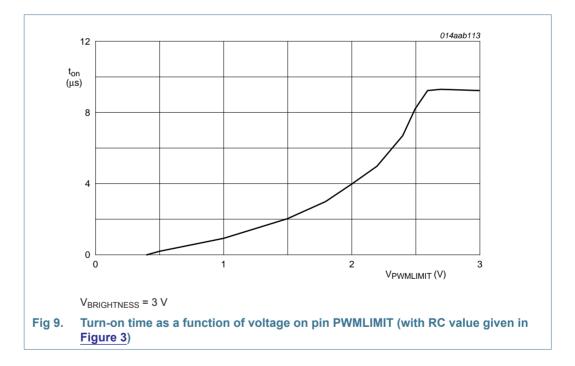
Table 6. Characteristics ...continued

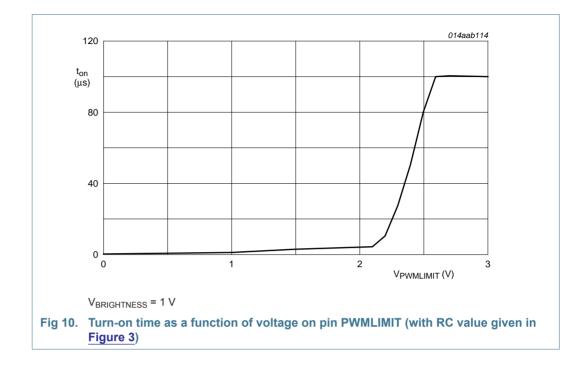
 T_{amb} = 25 °C; no overtemperature; all voltages are measured with respect to ground; currents are positive when flowing into the IC; V_{CC} = 20 V and PWMLIMIT and BRIGHTNESS pins are disconnected unless otherwise specified. Typical frequency 100 kHz.

Symbol	Parameter	Conditions		Min	Тур	Мах	Uni
Duty factor regu	Ilator: pin PWMLIMIT						
I _{PWMLIMIT}	current on pin PWMLIMIT			-25	-	-18	μΑ
V _{PWMLIMIT}	voltage on pin PWMLIMIT	maximum duty cycle threshold V _{BRIGHTNESS} = 3 V		-	2.6	-	V
		minimum duty cycle threshold $V_{BRIGHTNESS}$ = 3 V		-	0.45	-	V
Valley switching	I						
$(\Delta V / \Delta t)_{vrec}$	valley recognition voltage change with time	minimum absolute value	[3]	-	100	-	V/µ
f _{ring}	ringing frequency	$N \times V_O$ = 100 V		200	500	800	kHz
t _{d(vrec-swon)}	valley recognition to switch-on delay time			-	150	-	ns
Current and sho	ort circuit winding protection						
V _{th(ocp)} SOURCE	overcurrent protection threshold voltage on pin SOURCE	dV/dt = 0.1 V/µs		0.46	0.50	0.53	V
$V_{th(swp)SOURCE}$	short-winding protection threshold voltage on pin SOURCE	dV/dt = 0.1 V/µs		-	1.5	-	V
$t_{d(ocp-swoff)}$	delay time from overcurrent protection to switch-off	dV/dt = 0.5 V/µs		-	160	185	ns
t _{leb}	leading edge blanking time			250	350	450	ns
FET driver outp	ut stage						
V _{O(PWR_DRV)}	output Voltage on pin PWR_DRV			-	12	V_{CC}	V
t _{r(PWR_DRV)}	rise time on pin PWR_DRV	With maximum input capacitance 4.7 nF on pin PWR_DRV; V _{CC} = 20 V		-	210	-	ns
$t_{f(PWR_DRV)}$	fall time on pin PWR_DRV	With maximum input capacitance 4.7 nF on pin PWR_DRV; V _{CC} = 20 V		-	210	-	ns
Temperature pro	otection						
T _{otp}	overtemperature protection threshold	junction temperature		150	160	170	°C
T _{otp(hys)}	overtemperature protection trip hysteresis	junction temperature		-	7	-	°C

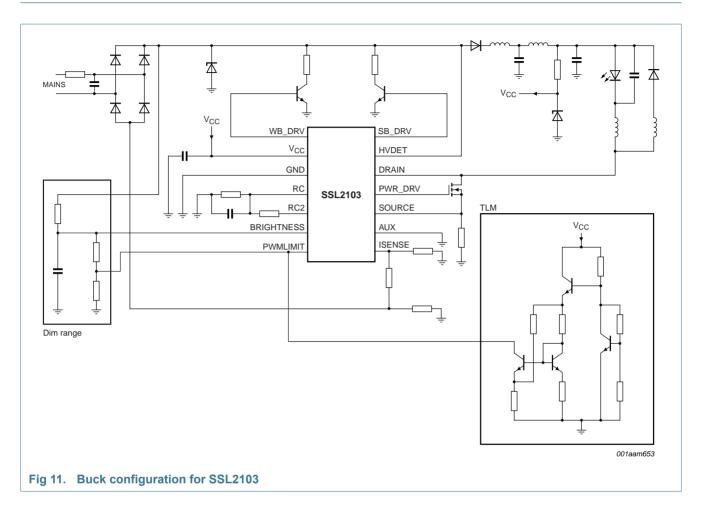

[1] V_{CC} = 20 V minimum to meet all characteristics.

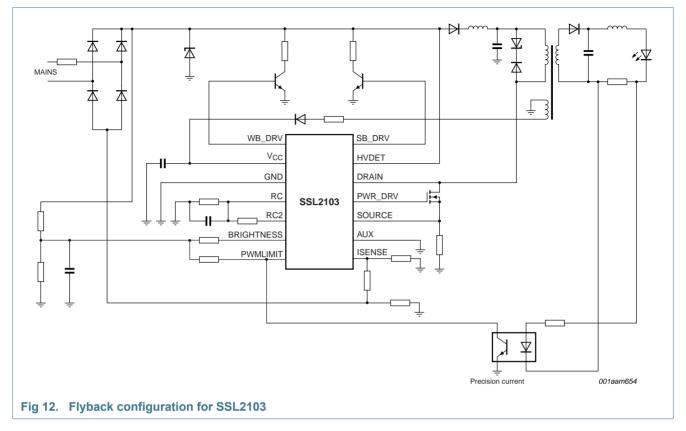
[2] SB_DRV is active during V_{CC} start-up.

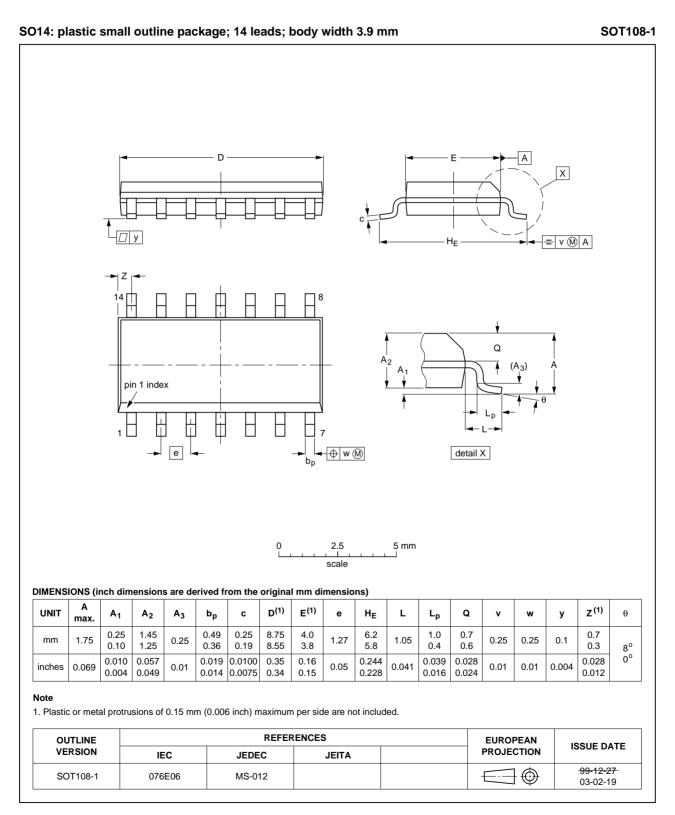

[3] Voltage change in time for valley recognition.


SSL2103

Dimmable Greenchip controller for LED lighting






12. Application information

Further application information can be found in the SSL2103 application notes.

13. Package outline

Fig 13. Package outline SOT108-1 (SO14)