

1. General description

The SSL5231BT is a highly integrated, high-precision buck controller with an external MOSFET. It is intended to drive LED lamps in dimmable lighting applications up to 25 W. The SSL5231BT is designed for high power factor, phase-dimmable applications.

The SSL5231BT operates in Boundary Conduction Mode (BCM) with constant on-time control. It provides a constant output current control with good LED output current accuracy. Adaptive switching frequency gives freedom to choose the inductor, which enables the optimization of inductor size, efficiency and EMI.

The SSL5231BT can start up and operate in switching mode directly from an external resistor without capacitor charge pump supply or auxiliary supply. This feature simplifies the V_{CC} supply. So, a low-cost off-the-shelf inductor can be used, which provides flexibility in application design.

2. Features and benefits

- Supports most available dimming solutions
- Deep dimming level
- Flicker-free dimming
- Low component count ensuring a compact solution and small, single layer Printed-Circuit Board (PCB) footprint
- Excellent line regulation and load regulation and good LED output current accuracy
- Efficient BCM operation with:
 - Minimal recovery losses in freewheel diode
 - Zero Current Switching (ZCS) and Valley switching for turn-on of switch
 - Minimum inductance value and size required
 - High efficiency (up to 91 %)
 - Ultra low IC current during operation (< 165 μA)
- Auto-recovery protections:
 - UnderVoltage LockOut (UVLO)
 - Cycle-by-cycle OverCurrent Protection (OCP)
 - Internal OverTemperature Protection (OTP)
 - Output OverVoltage Protection (OVP)
 - Output Short Protection (OSP)
- Extended IC lifetime

3. Applications

The SSL5231BT is intended for low-cost, non-isolated dimmable lighting applications that work from single mains voltage.

4. Quick reference data

Table 1. Quick reference data							
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{CC}	supply voltage	operating range [1]	9.9	-	16	V	
R _{DSon}	on-state resistance	source-switch					
		T _j = 25 °C	-	0.81	-	Ω	
		T _j = 125 °C	-	1.2	-	Ω	
I _{I(SW)}	input current on pin SW	duty cycle < 20 %	-2	-	+2	A	
V _{I(SW)}	input voltage on pin SW	current limited at 8.8 mA; internal switch-off	-0.4	-	+22	V	

An internal clamp sets the supply voltage. The current into the VCC pin must not exceed the maximum I_{VCC} value (see Table 4).

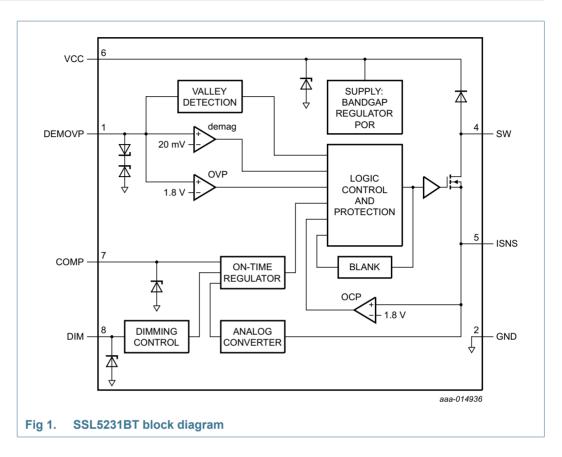
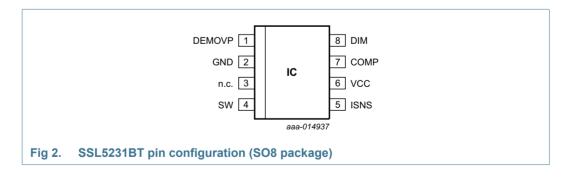

5. Ordering information

Table 2.Ordering information

Type number Package					
	Name	Description	Version		
SSL5231BT	SO8	plastic surface-mounted package; 8 leads	SOT96-1		


Mains-dimmable buck LED driver IC

6. Block diagram

7. Pinning information

7.1 Pinning

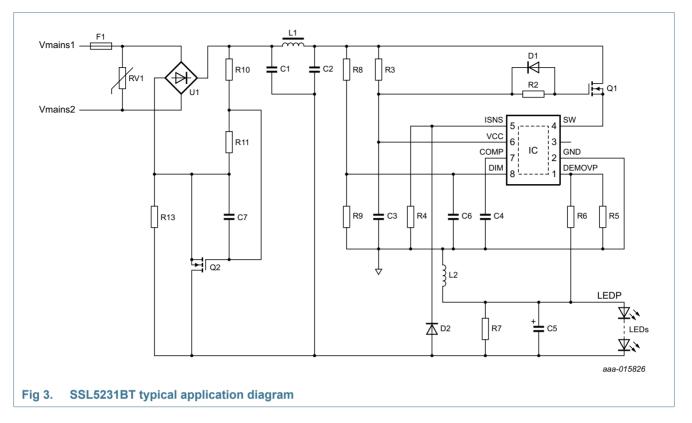
7.2 Pin description

_ .

Symbol	Pin	Description
DEMOVP	1	input from LED output for demagnetization timing, valley detection, and OVP
GND	2	ground
n.c.	3	not connected
SW	4	internal source-switch drain
ISNS	5	current sense input
VCC	6	supply voltage
COMP	7	loop compensation to provide stable response
DIM	8	dimming control input

8. Functional description

8.1 Converter operation


The converter in the SSL5231BT is a source-switch, BCM, on-time controlled buck system. Figure 3 shows the basic application diagram. To save IC supply current, an integrated source-switch topology is used. It enables that even in switching mode only an external resistor is used as supply.

The converter operates at the boundary between Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Figure 5 shows the waveforms.

When the internal source-switch is switched on at t0, the inductor current I_L proportionally to V_{in} - V_{out} builds up from zero during the source-switch on-time (t0 to t1). Energy is stored in inductor L2. When the internal source-switch switches off at t1, I_L flows through the freewheeling diode D2 and output capacitor C5. The inductor current drops proportionally to the V_{out} value (t2 to t3). When I_L reaches zero at t3, a new switching cycle is started after a short delay (t3 to t00) from valley detection.

SSL5231BT

Mains-dimmable buck LED driver IC

8.2 On-time control

When measuring the inductor current IL using sense resistor R4, the on-time is regulated so that the average ISNS voltage ($V_{reg(AV)ISNS}$) is regulated to 300 mV. The average output current lout can be calculated with Equation 1:

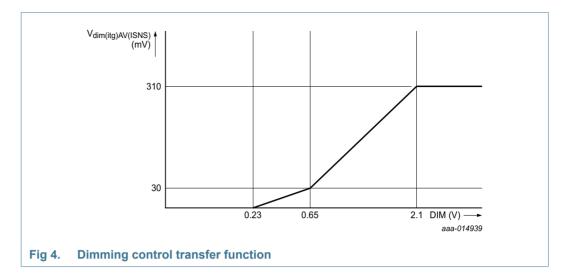
$$I_{out} = \frac{V_{intregd(AV)ISNS}}{R4 + R_{bond} \times \delta_{swon}}$$
(1)

Where:

- R_{bond} is the ISNS bond wire resistance
- δ_{swon} is the switch-on duty cycle •

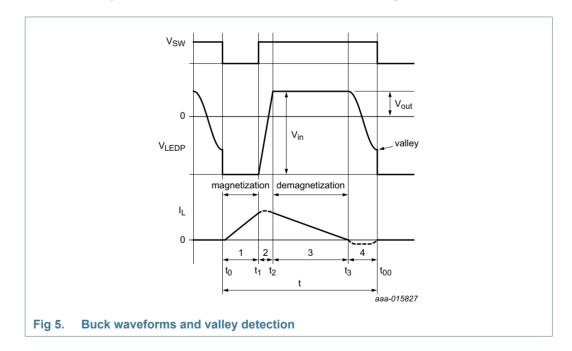
8.3 Dimming control

When measuring the phase-cut mains voltage using the DIM pin, the DIM voltage modulates the internal reference voltage. The dimmed output current I_{O(dim)} can be calculated with Equation 2:

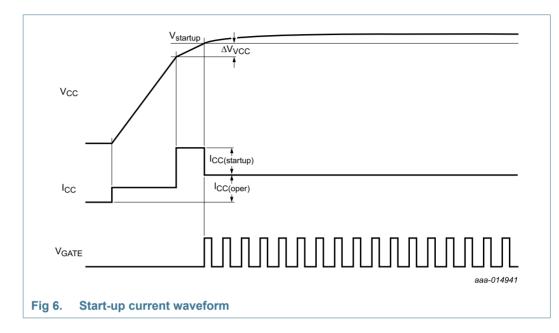

$$I_{O(dim)} = \frac{V_{dim(itg)AV(ISNS)}}{R4 + R_{bond} \times \delta_{swon}}$$
(2)

Where:

- Rbond is the ISNS bond wire resistance
- δ_{swon} is the switch-on duty cycle


SSL5231BT

Mains-dimmable buck LED driver IC


8.4 Valley detection

When I_L has decreased to zero at t3, the LEDP voltage starts to oscillate around the $V_{in} - V_{out}$ level, with amplitude V_{out} and frequency (f_{ring}). A special circuit called valley detection is integrated in the SSL5231BT. It senses when the LEDP voltage reaches its lowest level (valley) at the DEMOVP pin. The internal source-switch is switched on again when the valley is detected. As a result, the switch-on switching losses are reduced.

8.5 Start-up

The supply current for the IC is supplied by resistor R_{VCC} . Just before V_{CC} reaches the start-up voltage level ($V_{startup}$), the IC draws an additional start-up current ($I_{CC(startup)}$). So the supply current in operation is lower than the supply current during start-up conditions. It prevents lamp flicker when the mains voltage increases or decreases slowly.

8.6 Leading-Edge Blanking (LEB)

To prevent false detection of overcurrent, a blanking time following switch-on is implemented. When the internal source-switch turns on, a short current spike can occur because of the capacitive discharge of voltage over the drain and the source. It is disregarded during the LEB time (t_{leb}).

8.7 Magnetization switching

When the mains voltage is very low, during dimming or around the zero crossings of the mains, the system hardly delivers any energy to the LED. To improve the efficiency, maximum off-time ($t_{off(max)}$) switching limits the switching frequency to < 25 kHz. A peak voltage on the ISNS pin below the $V_{I(min)ISNS}$ voltage indicates a low mains voltage.

8.8 Protections

The IC incorporates the following protections:

- UnderVoltage LockOut (UVLO)
- Cycle-by-cycle OverCurrent Protection (OCP)
- Internal OverTemperature Protection (OTP)
- Cycle-by-cycle maximum on-time protection
- Output OverVoltage Protection (OVP)
- Output Short Protection (OSP)

8.8.1 UnderVoltage LockOut (UVLO)

When the voltage on the VCC pin drops to below $V_{th(UVLO)}$, the IC stops switching. An attempt is made to restart IC when the $V_{CC} > V_{startup}$.

8.8.2 Cycle-by-cycle OverCurrent Protection (OCP)

The SSL5231BT contains a built-in peak current detector. It triggers when the voltage at the ISNS pin reaches the peak level $V_{I(max)ISNS}$. A resistor connected to the ISNS pin senses the current through the inductor I_L . The maximum current in inductor $I_{L(max)}$ can be calculated with Equation 3:

$$I_{L(max)} = \frac{V_{I(max)ISNS}}{R4 + R_{bond} \times \delta_{swon}}$$
(3)

Where:

- Rbond is the ISNS bond wire resistance
- δ_{swon} is the switch-on duty cycle

The sense circuit is activated after the LEB time (t_{leb}). It automatically provides protection for maximum LED current during operation because the LED current is half the peak current by design. A propagation delay exists between overcurrent detection and the actual source-switch switch-off. Due to this delay, the actual peak current is slightly higher than the OCP level set by the resistor in series with the ISNS pin.

8.8.3 OverTemperature Protection (OTP)

When the internal OTP function is triggered at IC junction temperature $T_{pl(IC)}$, the converter stops switching. The IC resumes switching when the IC temperature drops to below $T_{pl(IC)rst}$.

8.8.4 Cycle-by-cycle maximum on-time protection

Measuring the inductor current I_L using sense resistor R_{sense} regulates the on-time. The on-time is limited to a fixed value ($t_{on(max)}$). It protects the system and the IC when the ISNS pin is shorted or the system works at very low mains.

8.8.5 Output OverVoltage Protection (OVP)

Measuring the voltage at the DEMOVP pin during the secondary stroke gives an accurate output OVP. The resistive divider connected between the LEDP node and the DEMOVP pin sets the maximum LED voltage.

An internal counter prevents false OVP detection because of noise on the DEMOVP pin. After three continuous cycles with a DEMOVP pin voltage exceeding the OVP level, OVP is triggered.

OVP triggers a restart sequence: A discharge current ($I_{CC(dch)}$) is enabled and discharges V_{CC} to below $V_{rst(latch)}$. When $V_{rst(latch)}$ is reached, the system restarts.

8.8.6 Output Short Protection (OSP)

The converter operates in Discontinuous Conduction Mode (DCM). A new cycle is only started after the previous cycle has ended. Measuring the voltage on the DEMOVP pin detects the end of the cycle. When the DEMOVP pin voltage drops to below the

SSL5231BT

demagnetization level ($V_{det(demag)}$) and a valley is detected, a new cycle starts. The converter regulates the adjusted output current and the on-time is reduced to a safe value by this feedback. The reduced on-time in combination with a very long demagnetization period prevents the converter from any damage or excessive dissipation.

To prevent false demagnetization detection, a blanking time $(t_{sup(xfmr_ring)})$ is implemented at the start of the secondary stroke.

8.9 Supply management

The IC starts up when the voltage at the VCC pin exceeds V_{startup}. The IC locks out (stops switching) when the voltage at the VCC pin drops to below V_{th(UVLO)}. The hysteresis between the start and stop levels allows the VCC capacitor to supply the IC during zero-crossings of the mains.

The SSL5231BT incorporates an internal VCC clamping circuit. The clamp limits the voltage on the VCC supply pin to the maximum value $V_{clamp(VCC)}$. If the maximum current of the external resistor minus the current consumption of the IC is lower than the limiting value of I_{VCC} in Table 4, no external Zener diode is required.

9. Limiting values

Symbol	Parameter	Conditions	Min	Мах	Unit
Voltages		1			
V _{CC}	supply voltage	current limited [1]	2] -0.4	+18	V
V _{I(SW)}	input voltage on pin SW	current limited [1]	2] -0.4	+22	V
V _{I(ISNS)}	input voltage on pin ISNS		-0.4	+5	V
V _{IO(COMP)}	input/output voltage on pin COMP		-0.4	+5.3	V
V _{I(DEMOVP)}	input voltage on pin DEMOVP		-6	+6	V
V _{I(DIM)}	input voltage on pin DIM		-0.4	+5	V
Currents					
I _{I(VCC)}	input current on pin VCC		-	+8.8	mA
I _{I(SW)}	input current on pin SW	RMS current	-	380	mA
		duty cycle < 20 %	-2	+2	А
I _{I(ISNS)}	input current on pin ISNS	duty cycle < 20 %	-2	+2	А
General					
P _{tot}	total power dissipation	T _{amb} < 75 °C	-	0.28	W
T _{stg}	storage temperature		-55	+150	°C
Tj	junction temperature		-40	+160	°C
ESD			·	·	
V _{ESD}	electrostatic discharge	class 1			
	voltage	human body model	3] –2000	+2000	V
		charged device model	4] -500	+500	V

Table 4. Limiting values

[1] The current into the VCC pin must not exceed the maximum I_{VCC} value.

[2] An internal clamp sets the supply voltage and current limits.

[3] Equivalent to discharge a 100 pF capacitor through a 1.5 $k\Omega$ series resistor.

[4] Charged device model: equivalent to charging the IC up to 1 kV and the subsequent discharging of each pin down to 0 V over a 1 Ω resistor.

Unit K/W

K/W

K/W

10. Thermal characteristics

Table 5. Thermal characteristics						
Symbol	Parameter	Conditions	Тур			
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; PCB; 2 cm \times 3 cm; 2-layer; 35 μ m copper/layer				
		in free air; SO8 package; PCB; JEDEC 2s2p	89			
Ψ_{j-top}	thermal resistance from junction to top	top package temperature	0.49			

measured at the warmest point on top

of the case

11. Characteristics

Table 6. Characteristics

 T_{amb} = 25 °C; V_{CC} = 15 V; all voltages are measured with respect to ground pin (pin 2); currents are positive when flowing into the IC; unless otherwise specified.

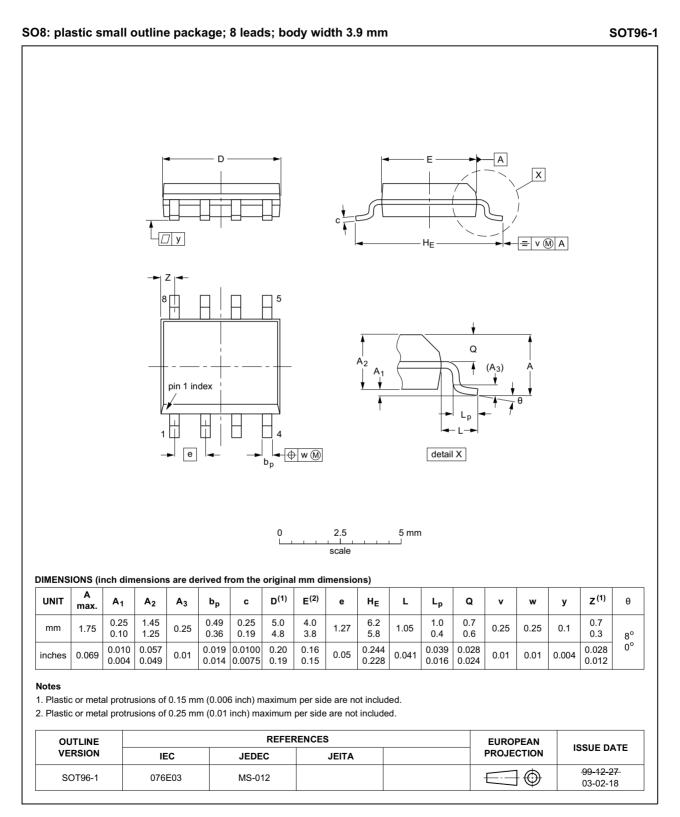
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply (pin VC	C)					
V _{startup}	start-up voltage		14.45	14.9	15.35	V
V _{th(UVLO)}	undervoltage lockout threshold voltage		9.6	9.9	10.2	V
ΔV_{VCC}	voltage difference on pin VCC		0.17	0.30	0.43	V
V _{I(VCC)}	input voltage on pin VCC	delta voltage	0.17	0.30	0.43	V
V _{clamp(VCC)}	clamp voltage on pin VCC	I _{I(VCC)} = 2.6 mA [1]	15.2	15.8	16.4	V
V _{rst(latch)}	latched reset voltage		5.8	6.2	6.6	V
I _{CC(oper)}	operating supply current	switching at 100 kHz	125	145	165	μA
I _{CC(startup)}	start-up supply current		120	145	170	μA
I _{CC(dch)}	discharge supply current	V _{CC} = V _{rst(latch)}	3.7	-	-	mA
Loop compens	ation (pin COMP)					
V _{ton(zero)}	zero on-time voltage		1.9	2.0	2.1	V
V _{ton(max)}	maximum on-time voltage		3.8	4.0	4.2	V
V _{clamp} (COMP)	clamp voltage on pin COMP		4.3	4.7	5.1	V
t _{on(max)}	maximum on-time	V _{IO(COMP)} = 4 V	12.3	15.5	18.7	μS
I _{O(COMP)}	output current on pin COMP	$V_{I(ISNS)} = 0 V; V_{I(DIM)} > 2 V$	2.4	3.0	3.6	μA
I _{dch(COMP)}	Discharge current on pin COMP	V _{I(DIM)} = 0 V	350	550	750	nA
Valley detection	n and overvoltage detection (pin D	EMOVP)				
I _{prot(DEMOVP)}	protection current on pin DEMOVP	open current; V _{I(DEMOVP)} = 0 V	-250	-180	-50	nA
V _{th(ovp)}	overvoltage protection threshold voltage		1.74	1.81	1.88	V

Table 6. Characteristics ...continued

 T_{amb} = 25 °C; V_{CC} = 15 V; all voltages are measured with respect to ground pin (pin 2); currents are positive when flowing into the IC; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
N _{cy(ovp)}	number of overvoltage protection cycles		-	3	-	-
(dV/dt) _{vrec}	valley recognition voltage change with time	[2]	-	-3.8	-	V/µs
V _{det(demag)}	demagnetization detection voltage		4	18	32	mV
t _{sup(xfmr_ring)}	transformer ringing suppression time		1.2	1.5	1.8	μS
Current sensing	(pin ISNS)					,
V _{I(min)ISNS}	minimum input voltage on pin ISNS		30	50	70	mV
V _{I(max)} ISNS	maximum input voltage on pin ISNS		1.7	1.8	1.9	V
t _{on(min)}	minimum on-time	[3]	310	410	510	ns
t _d	delay time	[3]	-	100	-	ns
g _m (ISNS)	ISNS transconductance	V _{I(ISNS)} to I _{O(COMP)}	8.4	9.7	11	μA/V
Vintregd(max)ISNS	maximum internal regulated voltage on pin ISNS	V _{I(DIM)} > 2 V	0.298	0.31	0.324	V
Dimming control	(pin DIM)					
Vintregd(AV)/Vdim	average internal regulated	0.65 V < V _{DIM} < 2 V	190	200	210	mV/V
	voltage ratio to dimming voltage	0.25 V < V _{DIM} < 0.6 V	58	70	92	mV/V
V _{clamp(DIM)}	clamp voltage on pin DIM	I _{I(DIM)} = 200 μA	3.8	4.0	4.2	V
Driver (pin SW)				·	·	·
R _{DSon}	on-state resistance	T _j = 25 °C	-	0.81	0.9	Ω
		T _j = 125 °C	-	1.2	-	Ω
t _{off(max)}	maximum off-time		30	40	50	μS
Temperature pro	tection					
T _{pl(IC)}	IC protection level temperature		140	150	165	°C
T _{pl(IC)rst}	reset IC protection level temperature		106	118	130	°C

[1] The start-up voltage and the clamp voltage are correlated.


[2] Guaranteed by design.

[3] $t_{leb} = t_{on(min)} - t_d$; $t_{on(min)}$ is only effective when OCP is triggered.

Product data sheet

Mains-dimmable buck LED driver IC

12. Package outline

Fig 7. Package outline SOT96-1 (SO8)