

1. General description

The SSL5511T is an offline dimmable controller IC, intended to drive dimmable LEDs in general lighting applications, like remote-controlled luminaires and smart lamps.

The main benefits of this IC include:

- Dim level control with either an analog or a digital control input
- Selectable modes for high power factor or low ripple, allowing a wide LED power range
- Large dimming range
- Single stage topology for small PCB footprint
- Ease of design-in
- Integrated start-up JFET
- Low electronic Bill Of Material (BOM)
- Various converter topologies supported

The IC drives an external switch for easy power scaling. It has been designed to start up directly from the High-Voltage (HV) supply by an internal high-voltage current source. Flyback, buck and buck-boost circuit topologies are supported. Primary side sensing provides accurate output current control.

The IC can detect analog signals (according to IEC60929 annex E) or digital control signals and translate them to a continuous LED current in multiple ways. It can operate in three switching modes at two switching frequency ranges. It offers tradeoffs between the output current ripple, the mains current Total Harmonic Distortion (THD) and the application size. The IC incorporates all required protection features.

2. Features and benefits

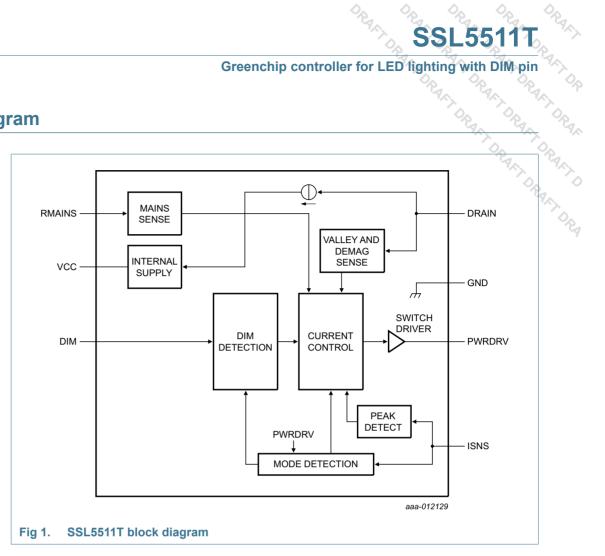
- LED controller IC for driving strings of LEDs or high-voltage LEDs from rectified mains
- High-efficiency switch mode buck, flyback or buck-boost controller driving an external power FET
 - Two maximum switching frequencies for highest efficiency or smallest application size
 - Zero current switching at switch turn-on
 - Zero voltage or valley switching at switch turn-on
 - Selectable low THD or low LED current ripple modes
- Analog IEC60929 input or digital control input for dimming
- Continuous (analog) regulation of LED current in both the dimming control modes
- Dim curve selection based on the control input type
- No binning on LED forward voltage required
- LED current accuracy within ±4 % across variations in components and conditions
- Built-in Protections:
 - UnderVoltage LockOut (UVLO)
 - Leading Edge Blanking (LEB)
 - OverCurrent Protection (OCP)
 - Internal OverTemperature Protection (OTP)
 - Brownout protection
 - Output Short Protection (OSP)
 - Output open OverVoltage Protection (OVP)
 - Mains synchronization loss protection
- Low component count LED driver solution
- Compatible with wall switches with built-in indication light during standby(
- IC lifetime matches or surpasses LED lamp lifetime

3. Applications

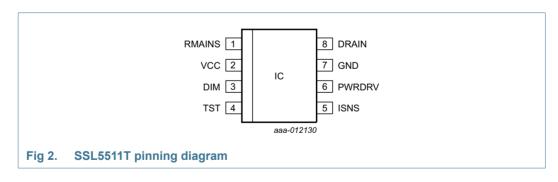
Compact mains connected, remote-controlled LED lamps with accurate, dimmable current output for single or universal mains voltages, including 100 V (AC), 120 V (AC) and 230 V (AC). External components determine the power level. The power level ranges from 4 W to over 25 W. Applications fit in common form factors like PAR, GU10, A19, and the candle form factor.

		Greenc	hip controller	for LED 1	ighting w	ith DIM pin
4. Quicl	k reference data				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A CAN
T _{amb} = 25 °C; \	lick reference data V _{CC} = 19.5 V; all voltages ar otherwise specified.	e measured with respect to the	ground pin; curr	ents are po	sitive wher	ith DIM pin
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC}	supply voltage		8.8	-	32	V
f _{sw}	switching frequency	low-frequency mode; undimmed				
		50 Hz mains	55	60	65	kHz
		60 Hz mains	66	72	78	kHz
		high-frequency mode; undimmed				
		50 Hz mains	84	91	98	kHz
		60 Hz mains	101	109	117	kHz
I _{CC}	supply current	normal operation	-	2.25	-	mA
V _{I(DRAIN)}	input voltage on pin DRAIN	not repetitive	-	-	700	V
V _{o(PWRDRV)}	output voltage on pin PWRDRV	high level	-	10.7	-	V

Ordering information 5.


Ordering information Table 2.

Type number	Package		
	Name	Description	Version
SSL5511T	SO8	plastic small package outline body; 8 leads; body width 3.9 mm	SOT96-1


DRAFTOS

Block diagram 6.

Pinning information 7.

7.1 Pinning

7.2 Pin description

Pin descri	ption	
Table 3. Pi	n descriptio	
Symbol	Pin	Description
RMAINS	1	mains detection input
VCC	2	IC supply input/output
DIM	3	dim-level control input
TST	4	IC test pin, to be connected to ground in application
ISNS	5	peak current sense input
PWRDRV	6	external MOSFET gate driver output
GND	7	ground
DRAIN	8	external MOSFET drain sense input

Functional description 8.

8.1 **Pin functionality**

8.1.1 Pin RMAINS

The RMAINS pin takes in a current representing the rectified mains voltage via the external RMAINS resistors. The low ohmic input results in current always flowing, causing the voltage on the RMAINS pin to remain below the maximum V_{i(RMAINS)} at any time. The information about the mains voltage is used to shape the output current waveform in LTHD modes. It is also used for internal timing synchronizations, making it essential for the low-ripple applications. Some filtering may be required outside the IC to eliminate incoming noise.

If the pin does not receive a rectified mains signal, the mains synchronization loss protection is triggered.

8.1.2 Pin VCC

At power-up, the VCC pin and its capacitor are charged using the internal HV current source from the DRAIN pin. Once V_{CC} has reached V_{CC(startup)}, switching starts and V_{CC} supply is generated from the auxiliary winding. If V_{CC} exceeds $V_{ovp(VCC)}$ due to, for example, a disconnected output, OVP is triggered. If V_{CC} drops to V_{CC(low)}, the internal HV current source is enabled. If V_{CC} drops to below V_{CC(stop)}, UVLO protection is triggered.

Do not use the VCC pin to power additional circuitry outside the IC because no additional current budget is guaranteed. An additional V_{CC} load can affect product performance.

To support wall switches that include an indicator light, a predetermined current (I_{CC}) is pulled from the supply during a limited window of the VCC voltage (see condition 2 of I_{CC} in Table 7).

8.1.3 Pin DIM

The DIM pin is the dimming level control pin. It also acts as the on/off control pin. It accepts both an analog voltage signal and a digital control signal as input. The type of input signal is automatically detected and the input is then translated into a target output current level (see Section 8.2.6).

8.1.4 Pin ISNS

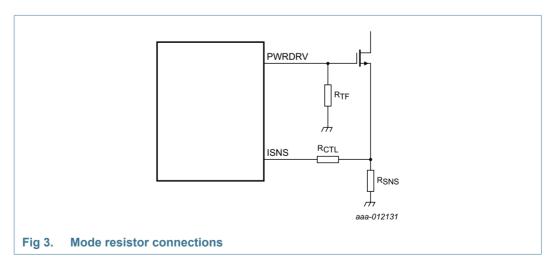
The ISNS pin senses the voltage across the sense resistor, R_{SNS}, generated by the inductor current flowing through the external MOSFET and this resistor (see Figure 3).

Optionally, a mode definition resistor is present between the pin and the current sense resistor. At start-up, the mode resistor is measured using a current which is sourced out of the pin.

8.1.5 Pin PWRDRV

The SSL5511T is equipped with a driver that controls an external MOSFET. The voltage on the driver output pin is increased towards the maximum $V_{o(PWRDRV)}$ to open the switch during the first cycle (t0 to t1; see Figure 4). It is pulled to ground from the start of the secondary stroke until the next cycle starts (t1 to t00).

8.1.6 Pin DRAIN


The DRAIN pin is used to derive energy to charge the VCC pin at start-up and after switching is stopped because of a triggered protection. The signal at the DRAIN pin is also used to detect demagnetization and to determine the valley of the ringing voltage for starting the primary stroke.

8.2 Converter operation

8.2.1 Available modes

The SSL5511T incorporates various built-in operation modes which can be selected in the application using a maximum of two external resistors. At start-up, the value of these resistors is detected and the corresponding operation mode is set.

The mode resistor at the PWRDRV (R_{TF}) is connected to ground. The mode resistor at the ISNS pin (R_{CTL})is connected between the pin and the external MOSFET source (see Figure 3).

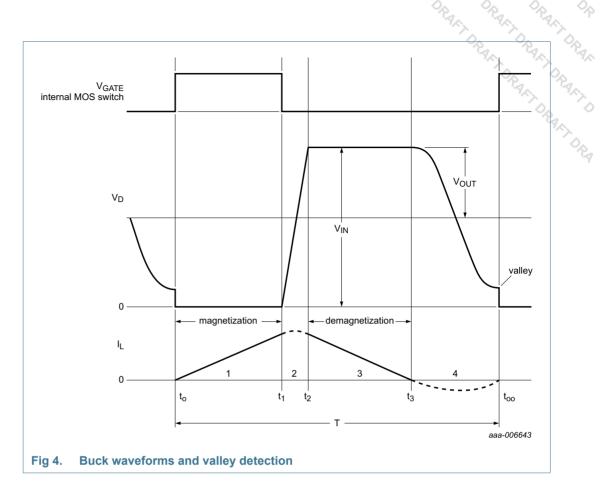
SSL5511T

			UQLUU III
	Greenc	hip controller for LED	fighting with DIM pin
0	overview of the available n I <mark>le modes</mark>	nodes.	
Parameter	How to set	Options	Mode resistor value
topology and frequency	R _{TF} on pin PWRDRV	flyback or buck-boost; HF mode	× ×
		buck; HF mode	56 kΩ
		buck; LF mode	33 kΩ
		flyback or buck-boost; LF mode	15 kΩ
control mode	R _{CTL} on pin ISNS	low ripple (PF < 0.7)	0 kΩ to 0.5 kΩ or 3.3 kΩ
		eco-LTHD (PF ~ 0.75)	1.5 kΩ
		LTHD (PF > 0.9)	5.6 kΩ

Table 4 Available modes

8.2.2 Switching scheme

The converter in the SSL5511T is a Discontinuous Conduction Mode (DCM), peak current controlled system. When the output current control system requires a new switching cycle and the inductor current is zero, the external MOSFET is turned on at the next detected valley (see Section 8.2.3). The inductor current increases until a maximum, defined by the regulation loop, is reached and the MOSFET is switched off. The inductor current reduces again. When the inductor current reaches zero, it is detected at the DRAIN pin. The detection enables the control system to regulate to an accurate average value of the LED current.


The maximum switching frequency can be set at two rates (see Section 8.2.1).

Three options are available which determine how the controller adjusts the maximum inductor peak current over the mains cycle. The result is either an optimal input current shape (optimized power factor and THD), a minimal LED current ripple, or an intermediate solution (eco-LTHD mode).

8.2.3 Valley detection

A new cycle is started when the primary switch is switched on (see Figure 4). At a certain time (t1), the switch is turned off and the secondary stroke starts. After the secondary stroke (t3), the drain voltage shows oscillation or ringing. Circuitry at the DRAIN pin senses when the voltage on the drain of the switch has reached its lowest value (valley) during each oscillation. When the control loop requires the next cycle, it is started the next time a valley occurs. As a result, the capacitive switching losses reduce significantly. For successful valley detection, the frequency and amplitude of the drain voltage ringing must cause the slope of the ringing voltage to exceed the detection limit $(\Delta V/\Delta t)_{vrec}$ for at least t_{d(vrec-swon)}.

Greenchip controller for LED lighting with DIM pin

8.2.4 Output current settings

The IC regulates the output LED current with great accuracy over line, load and component variations. The user can set the full-scale (100 %) value of the LED current. Choose a current sense resistor value according to Equation 1:

$$I_{LED} = \frac{V_{reg}}{R_{SNS}} \times N \tag{1}$$

Where:

- V_{reg} is the set point of the internal regulation loop: 117 mV for LTHD buck-boost/flyback, 234 mV for LTHD buck and low ripple buck-boost/flyback, and 469 mV for low-ripple buck
- R_{SNS} is the sense resistor on pin ISNS (see Figure 3)
- N is the transformer ratio

The IC regulates the output current by controlling the current sense threshold voltage $V_{th(ISNS)}$, the number of switching cycles per (half-)mains period, and, if necessary, the switching frequency, depending on the mode of operation.

8.2.5 Preventing Continuous Conduction Mode (CCM)

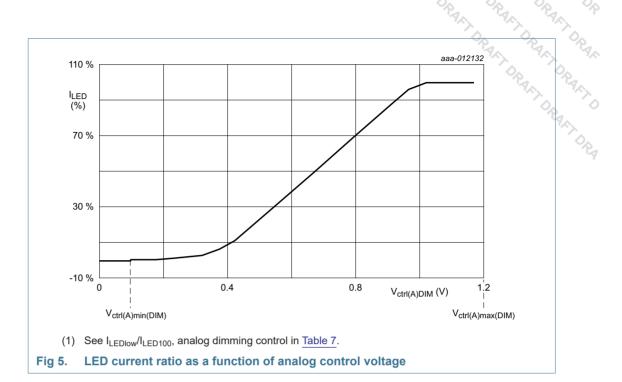
To enable application design without having to include margins to ensure DCM operation, a CCM-prevention feature has been built in. The IC monitors the time gap between the end of the secondary stroke and the start of the next cycle. If this time becomes shorter than a predetermined idle time of about 1.8 μ s, the controller reduces the switching frequency.

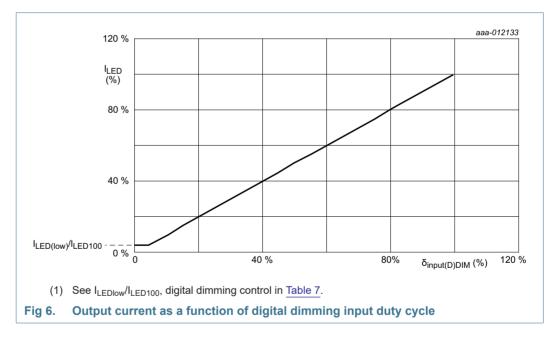
8.2.6 Dimming support

The SSL5511T accepts one of two different types of control signals on the DIM pin, either an analog voltage signal or a digital control signal. The type of the dimming control is detected during start-up. If digital switching occurs on the DIM pin, or if a voltage above the analog dimming input range ($V_{ctrl(A)DIM}$) is present on the pin, digital dimming control is detected. If a voltage within the analog range ($V_{ctrl(A)DIM}$) is present on the pin, then analog dimming control is detected. If the input remains low (below the analog dimming range), the target output current level is set to zero, and standby mode is entered. Dim mode selection is then postponed until one of the above detection conditions is met. Once the dimming type is detected, it is set fixed until power-down. During operation in either analog or digital dimming mode, the measurement of the DIM pin is done once in every full mains cycle. For both dimming control types, the output current regulation remains analog.

Analog Input Dimming Control (AIDC):

In this mode, an input voltage within the analog range ($V_{ctrl(A)DIM}$) is accepted on the DIM pin and translated to a target output current level. Figure 5 shows the plotting of the dimming percentage of the output current against the input voltage. The smooth tail of the curve matches human eye light sensitivity. The minimum output current level as a ratio of the full-scale current is I_{LEDIoW}/I_{LED100} . If the input voltage drops to below the analog range by more than the built-in hysteresis ($V_{hys(low)DIM}$), the output current is set to zero. The IC enters standby mode. Some filtering may be required outside the IC to eliminate incoming noise.


• Digital Input Dimming Control (DIDC):


A digital signal of a frequency within the range $f_{i(DIM)}$, and levels satisfying the thresholds $V_{th(L)DIM}$ and $V_{th(H)DIM}$ are accepted and translated to a target LED current level. The dimming percentage of the output current equals the duty cycle of the input signal (expressed as a percentage; see Figure 6). The minimum output current level as a ratio of the full-scale current is I_{LEDIoW}/I_{LED100} . If the input signal is low for longer than $t_{det(stb)DIM}$ in the measurement window, the output current is set to zero. The IC enters standby mode.

SSL5511T

SS

DRAFTO

8.3 Protections

The IC incorporates the following protections:

- UnderVoltage LockOut (UVLO
- OverCurrent Protection (OCP)
- Brownout Protection
- Output Short Protection (OSP)
- Output open OverVoltage Protection (OVP)
- Internal OverTemperature Protection (OTP)
- Mains synchronization loss protection
- Leading Edge Blanking (LEB)

Output open OVP is a latched protection. Power-off cycling is required to exit the latched state. All other protections are not latched and lead to a safe restart of the converter.

8.3.1 UnderVoltage LockOut (UVLO)

When the voltage on the VCC pin drops to below the value of $V_{CC(stop)}$, the IC stops switching. The internal HV current source is enabled. Once V_{CC} has increased to $V_{CC(startup)}$, the IC restarts a minimum of 1 s back-off time.

8.3.2 OverCurrent Protection (OCP)

The SSL5511T contains a highly accurate peak current detector. It triggers when the voltage at pin ISNS reaches $V_{th(ISNS)}$. The circuit is activated after the leading edge blanking time (t_{leb}). There is a propagation delay between the peak current detection and the switch actually switching off. Due to this delay, the actual peak current is slightly higher than the peak current level set by the current sense resistor. The control loop compensates for this difference ensuring output current accuracy.

8.3.3 Brownout protection

The brownout protection is designed to limit the switch-on time in case of low input voltage. Because of the built-in peak current control, the input current otherwise slowly increases while no power is transferred to the output in a flyback configuration. The SSL5511T includes a maximum on-time of the switch $t_{on(high)}$.

8.3.4 Output short protection (OSP)

During the secondary stroke (switch-off time), if a valley is not detected within the off-time limit ($t_{off(high)}$), the output voltage is typically less than the minimum limit allowed in the application. This condition can occur either during start-up or due to a short. A timer is started when $t_{off(high)}$ is detected. It is only stopped if a valid valley-detection occurs in one of the subsequent cycles. If no valley is detected for $t_{det(sc)}$, it is concluded that a real short-circuit exists and not a temporary start-up situation. The IC enters standby mode and tries to restart after a minimum of 9 s back-off time.

8.3.5 Output open OverVoltage Protection (OVP)

The result of an output open situation is that no power is delivered to the output, causing V_{CC} to exceed $V_{CC(max)}$. Upon detection of this event, the IC enters the standby mode. As long as mains voltage is present, the IC does not restart.

8.3.6 Internal OverTemperature Protection (OTP)

When the internal OTP function is triggered, the converter stops operating. This function is triggered at $T_{th(act)otp}$. The Overtemperature protection is an auto-restart protection. The IC restarts when the IC temperature drops to below $T_{th(rel)otp}$.

8.3.7 Mains synchronization loss protection

When the input current at the RMAINS pin fails to cross the "zero crossing detection" value of $I_{i(RMAINS)}$, no mains cycles are detected. If this situation persists for a time $t_{d(mld)}$, the IC stops switching. Once a valid mains signal is available again, the IC restarts.

8.3.8 Leading Edge Blanking (LEB)

A blanking time is implemented after switch-on to prevent premature detection of inductor peak current. At the opening of the MOSFET switch, a short current spike can occur because of the capacitive discharge of voltage over the drain and source. During the leading edge blanking time (t_{leb}), detection is disabled. So spikes are disregarded.

Limiting values 9.

	Conditions Min Max Unit neral total power dissipation SO8 package - 0.6 W						
	ED lighti	ng with	DIM pi				
			S.	in P			
ues							
ues				- 7.	4		
Table 5.	Limiting values				000		
	ce with the Absolute Maximum	Rating System (IEC 60134).			NAX,		
Symbol	Parameter	Conditions	Min	Max	Unit		
General							
P _{tot}	total power dissipation	SO8 package	-	0.6	W		
T _{amb}	ambient temperature		-40	+125	°C		
Tj	junction temperature		-40	+190	°C		
T _{stg}	storage temperature		-55	+150	°C		
SR	slew rate	pin DRAIN	-10	+10	V/ns		
Pin voltage	es and currents						
V _{CC}	supply voltage		-0.4	+34	V		
V _{i(RMAINS)}	input voltage on pin RMAINS	current limited	-0.4	+5.2	V		
I _{i(RMAINS)}	input current on pin RMAINS	at V _{RMAINS} = 5.2 V	0	1	mA		
V _{i(ISNS)}	input voltage on pin ISNS		-0.4	+5.2	V		
V _{i(DRAIN)}	input voltage on pin DRAIN	during mains surge; not repetitive	-0.4	+700	V		
V _{i(DIM)}	input voltage on pin DIM		-0.4	+5.2	V		
V _{ESD}	electrostatic discharge	human body model [1]					
	voltage	all pins except pin DRAIN	-2000	+2000	V		
		pin DRAIN	-1000	+1000	V		
		charged device model [2]	-500	+500	V		

[1] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k Ω series resistor.

[2] Charged device model: equivalent to charging the IC up to 1 kV and the subsequent discharging of each pin down to 0 V over a 1 Ω resistor.

10. Thermal characteristics

Table 6.	Thermal characteristics			
Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air; PCB: 2 cm × 3 cm; 2-layer; 35 μm Cu/layer in free air; PCB: JEDEC 2s2p	159 89	K/W K/W
Ψ _{j-top}	thermal characterization parameter from junction to top of package	top package temperature measured at the warmest top of the case point	0.49	K/W

SSL5511T **Product data sheet**

SS

		Greenchip contro	oller for L	ED lightir	ig with I	DIM pi
Greenchip controller for LED lighting with DIM 11. Characteristics Table 7. Characteristics $T_{amb} = 25 ^{\circ}C; V_{CC} = 19.5 V; all voltages are measured with respect to the ground pin; currents are positive when flowing the IC; unless otherwise specified.$						
11 Chara	cteristics					
					- PAA	Eq.
T _{amb} = 25 °C; V ₀	aracteristics _{CC} = 19.5 V; all voltages are measur therwise specified.	red with respect to the ground pin	; currents a	re positive	when flov	ving inte
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
High voltage				.76	max	• · · · ·
V _{I(DRAIN)}	input voltage on pin DRAIN	[1]	-	_	675	V
l _{i(DRAIN)}	input current on pin DRAIN	JFET on strong; $V_{DRAIN} = 675 V;$ $V_{CC} = 17 V$	4.4	6.4	8.4	mA
		JFET off; V_{DRAIN} = 675 V; V_{CC} = 20 V	-	-	15	μA
		JFET on weak;	500	550	600	μA
		V_{DRAIN} = 675 V; V_{CC} < 4 V				
Supply		Ι				
V _{CC(startup)}	start-up supply voltage		17.5	18.5	19.5	V
V _{CC(low)}	low supply voltage	pin VCC	11.2	11.8	12.4	V
V _{CC(stop)}	stop supply voltage		8.8	9.3	9.8	V
V _{CC(hys)}	hysteresis of supply voltage	between V_{startup} and V_{stop}	8.5	9.1	9.7	V
V _{ovp(VCC)}	overvoltage protection voltage on pin VCC		28	30	32	V
I _{CC}	supply current	pin DRAIN; V _{CC} < 4 V; standby mode	-	0.1	0.2	mA
		pin DRAIN; 4 V < V _{CC} < V _{CC(low)} ; standby mode	1	1.25	1.5	mA
		pin DRAIN; V _{CC} > V _{CC(low)} ; standby mode	-	0.2	-	mA
		pin VCC; normal operation, excluding drive currents to PWRDRV	-	2.25	-	mA
Current regula	tor and protection	1				
f _{sw}	switching frequency	low-frequency mode; undimmed				
		50 Hz mains	55	60	65	kHz
		60 Hz mains	66	72	78	kHz
		high-frequency mode; undimmed				
		50 Hz mains	84	91	98	kHz
		60 Hz mains	101	109	117	kHz
$V_{th(high)ISNS}$	high threshold voltage on pin ISNS	at peak current	1.195	1.24	1.285	V
V _{th(low)} ISNS	low threshold voltage on pin ISNS	(eco-)LTHD mode; at peak current	0.75	0.78	0.81	V
		low-ripple mode	0.33	0.35	0.37	V
t _{leb}	leading edge blanking time		-	600	-	ns

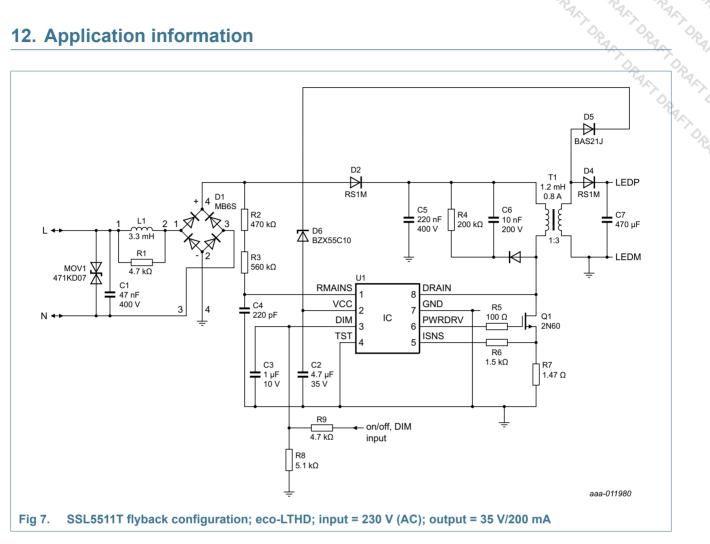
Silergy Corp) <u> </u>			SS		
		Greenchip cor	ntroller for L	ED lightin	ig with	DIM pi
				PR.	A YE	h. Y
Table 7. Chara	acteristicscontinued				TON .	The second
T _{amb} = 25 °C; V _{CC}	_C = 19.5 V; all voltages are measur	red with respect to the ground	pin; currents a	re positive [,]	when flo	wing inte
the IC; unless oth						00
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Valley detection						0
$(\Delta V / \Delta t)_{vrec}$	valley recognition voltage change with time negative slope	voltage ringing on pin DRAIN	-26	-16	-6	V/µs
t _{d(vrec-swon)}	valley recognition to switch-on delay time		-	100	-	ns
Brownout protect	ction					
t _{on(high)}	high on-time	low-frequency mode			\top	\top
		50 Hz mains	13.2	14.4	15.6	μs
		60 Hz mains	11.0	12.0	13.0	μs
		high-frequency mode				
		50 Hz mains	8.8	9.6	10.4	μs
		60 Hz mains	8.3	9.0	9.7	μs
Output short pro	otection	1	I			
t _{off(high)}	high off-time		32	40	48	μs
t _{det(sc)}	short-circuit detection time	50 Hz mains	10	-	20	ms
· · ·		60 Hz mains	8.3	-	16.7	ms
Temperature pro	otections	I	I	I		
T _{th(act)otp}	overtemperature protection activation threshold temperature	on-chip	160	175	190	°C
T _{th(rel)otp}	overtemperature protection release threshold temperature	on-chip	90	102	114	°C
Pin PWRDRV		1				
V _{o(PWRDRV)}	output voltage on pin	high level				
х <u>-</u>	PWRDRV	$V_{VCC} > V_{CC(low)}$	-	10.7	-	V
		$V_{VCC} = V_{CC(stop)}$	-	8.5	-	V
Isource(PWRDRV)	source current on pin PWRDRV	20 μs maximum; V _{PWRDRV} = 2 V	-	-360	-	mA
I _{sink} (PWRDRV)	sink current on pin PWRDRV	20 μs maximum; V _{PWRDRV} = 10 V	-	900	-	mA
		20 μs maximum; V _{PWRDRV} = 2 V	-	260	-	mA
Pin DIM						
V _{ctrl(A)} DIM	analog control voltage on pin DIM		0.1	-	1.2	V
V _{hys(low)} DIM	low hysteresis voltage on pin DIM	analog dimming control	-	-20	-	mV
V _{th(L)} DIM	LOW-level threshold voltage on pin DIM	digital dimming control	0.30	0.40	0.50	V
V _{th(H)} DIM	HIGH-level threshold voltage on pin DIM	digital dimming control	1.25	1.50	1.75	V
f _{i(DIM)}	input frequency on pin DIM	digital dimming control	0.1	_	10	kHz

Silergy Corp.Confidential- Prepared for Customer Use Only

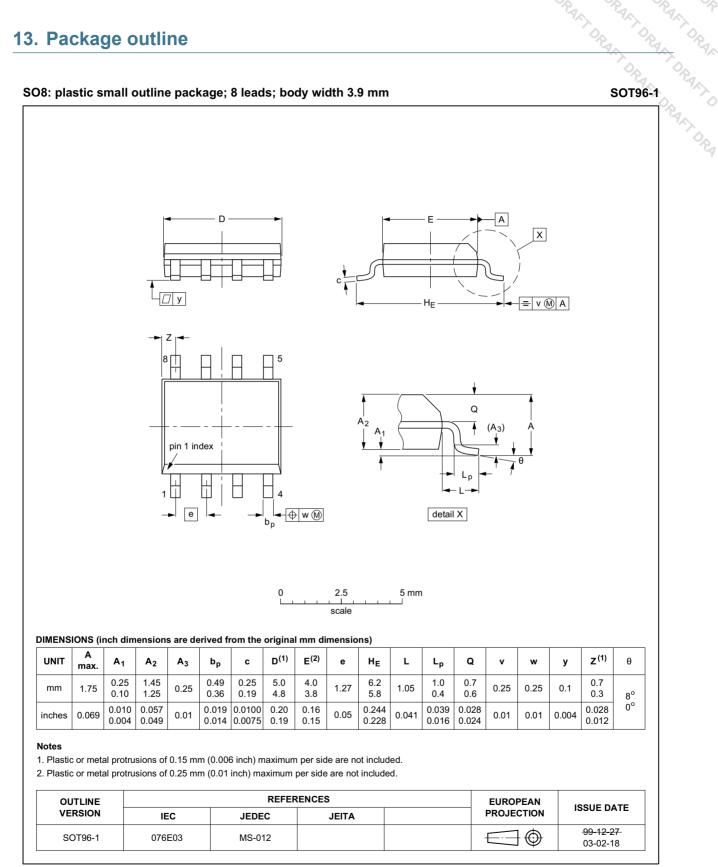
Table 7. Characteristics ... continued

the IC; unless othe Symbol	rwise specified. Parameter	Conditions		Min	Тур	Max	Unit
I _{offset(DIM)}	offset current on pin DIM			-7	-11	-15	μA
I _{LED(low)} /I _{LED100}	low LED current ratio	analog dimming control	[2]	-	0.008	-	
(01)00		digital dimming control; f _{i(DIM)} < 3 kHz	<u>[2]</u>	-	0.001	-	
		digital dimming control; 3 kHz < f _{i(DIM)} < 10 kHz	[2]	0.001	-	0.004	
		digital dimming control; f _{i(DIM)} = 10 kHz	<u>[2]</u>	-	0.004	-	
t _{det(stb)} DIM	standby detection time on pin DIM	digital dimming control		-	10	-	ms
Pin RMAINS							
I _{i(RMAINS)}	input current on pin RMAINS	at top of mains sine wave		324	360	396	μA
		for zero cross detection		18	22.5	27	μA
t _{d(mld)}	mains loss detection delay	50 Hz mains		-	60	-	ms
	time	60 Hz mains		-	50	-	ms
I _{sink(RMAINS)}	sink current on pin RMAINS	V _{i(RMAINS)} = 4 V		400	_	_	μA

[1] The peak voltage on pin DRAIN occurs each switching cycle, based 25,000 hours device lifetime.


[2] Actual LED current values are lower due to the IC supply current.

SSI


55

OPAR

12. Application information

13. Package outline

Fig 8. Package outline SOT96-1 (SO8)

SSL5511T