High-Efficiency, 200kHz, 100V Input, 0.6A Asynchronous Step-Down Regulator

General Description

The SY21034 high-efficiency asynchronous step-down DC/DC regulator can deliver 0.6A current over a wide input voltage range from 4.5V to 100V. It uses constant-off-time and peak-current-mode control to achieve fast transient response, and integrates a main switch with low R_{DS(ON)} to minimize conduction loss.

The 200kHz switching frequency permits low output-voltage ripple and reduces external inductor and capacitor sizes. The SY21034 also provides cycle-by-cycle current limiting and hiccup short-circuit protection.

The SY21034 is available in a compact TSOT23-6 package.

Features

- 4.5V to 100V Input Voltage Range
- Up to 0.6A Output Current
- Low $R_{DS(ON)}$ for Internal N-Channel power FET: 1Ω
- 200kHz Pseudo-constant Switching Frequency
- Constant Off-Time and Peak-Current-Mode control
- Internal Soft-Start
- 0.6V ±1% Reference
- Hiccup Mode Short-Circuit Protection
- EN On/Off Control with Accurate Threshold
- Cycle-by-Cycle Peak Current limit
- Compact TSOT23-6 Package

Applications

- Non-Isolated Telecommunication Buck Regulator
- Secondary High-Voltage Post Regulator
- Automotive Systems
- Electric Bicycles

Typical Application

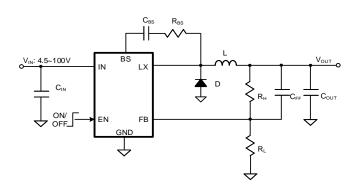


Figure 1. Typical Application Circuit

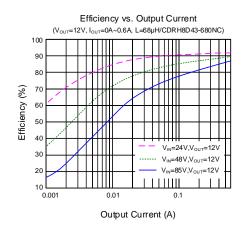
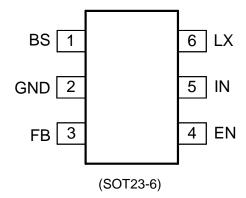


Figure 2. Efficiency vs. Output Current



Ordering Information

Ordering Part Number	Package type	Top Mark
	TSOT23-6	
SY21034ADC	RoHS- Compliant and Halogen- Free	HD <i>xyz</i>

x = year code, y = week code, z = lot number code

Pinout (top view)

Pin Description

Pin No	Pin Name	Pin Description
1	BS	Bootstrap pin. Supply for the high-side gate driver. Connect a 0.1µF ceramic capacitor between the BS and the LX pin.
2	GND	Ground pin.
3	FB	Output feedback pin. Connect this pin to the center point of the output resistor-divider (as shown in Figure 1) to program the output voltage using the following equation: $V_{OUT} = 0.6 \times (1 + R_H / R_L)$
4	EN	Enable control pin. Pull high to turn on. Do not leave floating.
5	IN	Input pin. Decouple this pin to the GND pin with at least a 4.7µF ceramic capacitor.
6	LX	Inductor pin. Connect this pin to the switching node of the inductor.

Block Diagram

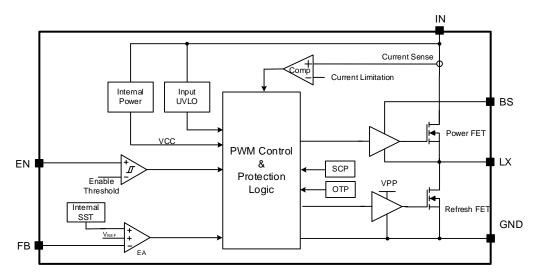


Figure 3. Block Diagram

Absolute Maximum Ratings

Parameter (Note 1)	Min	Max	Unit
IN	-0.3	100	
FB	-0.3	24	V
EN, LX	-0.3	IN + 0.3	V
LX, 20ns duration	GND - 5	IN + 3	
Junction Temperature, Operating	-40	150	
Lead Temperature (Soldering, 10s)		260	°C
Storage Temperature	-65	150	

Thermal Information

Parameter (Note 2)	Тур	Unit
θ _{JA} Junction-to-Ambient Thermal Resistance	100	°C/W
θ _{JC} Junction-to-Case Thermal Resistance	25	C/VV
P_D Power Dissipation $T_A = 25^{\circ}C$	1	W

Recommended Operating Conditions

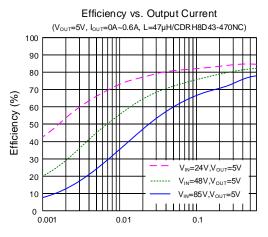
Parameter (Note 3)	Min	Max	Unit
IN	4.5	100	V
Junction Temperature	-40	125	°C
Ambient Temperature	-40	85	

Electrical Characteristics

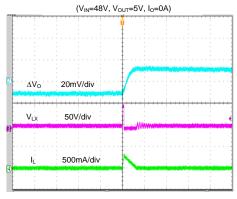
 $(V_{IN} = 48V, V_{OUT} = 12V, L = 68\mu H, C_{OUT} = 10\mu F, T_A = 25^{\circ}C, I_{OUT} = 0.1A, unless otherwise specified.)$

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
	Voltage Range	V _{IN}		4.5		100	V
	UVLO Rising Threshold	V _{IN,UVLO}				4.5	V
Input	UVLO Hysteresis	V _{HYS}			110		mV
	Quiescent Current	IQ	I _{OUT} = 0A, V _{FB} = 105% × V _{REF}		100		μΑ
	Shutdown Current	I _{SHDN}	$V_{EN} = 0V$		9	20	μΑ
	Reference Voltage	V_{REF}		0.588	0.6	0.612	V
Output	FB Input Current	I _{FB}	V _{FB} = V _{IN}	-50		50	nA
	Soft-Start Time	tss			800		μs
MOSFET	Power FET RDS(ON)	R _{DS(ON)}			1		Ω
	Power FET Current Limit	I _{LMT}		0.9		1.3	mΑ
Enable (EN)	Input Voltage High	V _{EN,H}		1.14	1.2	1.26	V
	Input Voltage Low	V _{EN,L}		0.94	1	1.06	V
	Switching Frequency	fsw		160	200	240	kHz
СОТ	Minimum On-Time	ton,min			80		ns
	Minimum Off-Time	toff,min			80		ns
OTP	Temperature	Тотр			150		°C
	Temperature Hysteresis	T _{HYS}			15		°C

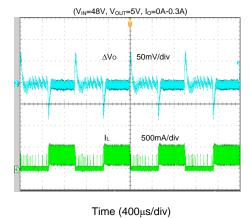
Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Note 2: θ JA is measured in the natural convection at TA = 25°C on a two-layer Silergy Evaluation Board.

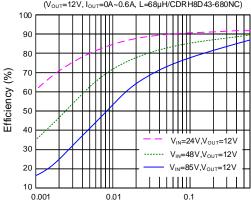
Note 3: The device is not guaranteed to function outside its operating conditions


Typical Performance Characteristics

 $(V_{IN} = 12V, V_{OUT} = 5V, L = 6.8\mu H, C_{OUT} = 22\mu F, T_J = 25^{\circ}C, I_{OUT} = 2A, unless otherwise noted)$

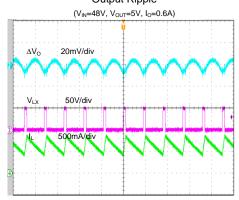

Output Current (A)

Output Ripple

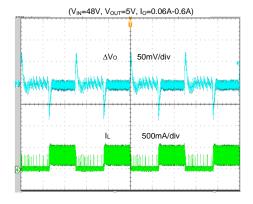


Time (4 µs/div)

Load Transient



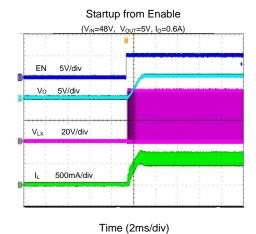
Efficiency vs. Output Current (V_{OUT}=12V, I_{OUT}=0A~0.6A, L=68µH/CDRH8D43-680NC)


Output Current (A)

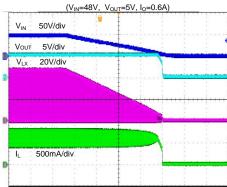
Output Ripple

Time (4 µs/div)

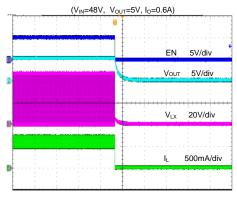
Load Transient



Time (400 μ s/div)

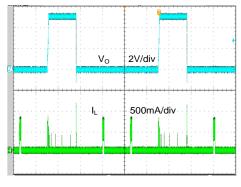


Time (4ms/div)



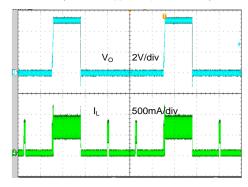
Shutdown from V_{IN}

Time (10ms/div)

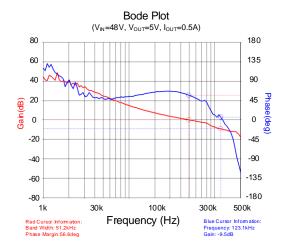

Shutdown from Enable

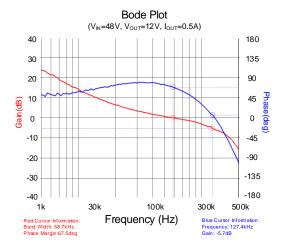
Time (2ms/div)

Short Circuit Protection


 $(V_{IN}\!\!=\!\!48V,\,V_{OUT}\!\!=\!\!5V,I_{O}\!\!=\!\!0A\!\!\sim\!\!Short)$

Time (20ms/div)


Short Circuit Protection


 $(V_{IN}=48V, V_{OUT}=5V, I_{O}=0.6A\sim Short)$

Time (20ms/div)

Detailed Description

The SY21034 high-efficiency asynchronous step-down DC/DC regulator can deliver 2A current over a wide input voltage range from 4.5V to 100V. It integrates a main switch with low $R_{DS(ON)}$ to minimize conduction loss.

The 800kHz switching frequency permits low outputvoltage ripple and reduces external inductor and capacitor sizes. The SY21034 also provides cycle-by-cycle current limiting, thermal shutdown, and hiccup short-circuit protection.

The SY21034 uses constant-off-time and peak-current-mode control. When the power FET's current-sense signal reaches internal V_{COMP}, the power FET turns off for a fixed period of time (constant t_{OFF}). t_{OFF} is internally calculated according to the input voltage, output voltage, and desired switching frequency (f_{SW}):

$$t_{OFF} = \frac{1 - V_{OUT}/V_{IN}}{f_{SW}}$$

The power FET turns on after a period of toff.

Enable Control

Pulling the EN pin low (<0.94V) will shut down the device. During shutdown mode, the SY21034 shutdown current will drop below 10 μ A. Driving the EN pin high (>1.26V) will turn the IC on again.

It is not recommended to connect EN and IN directly. A resistor in the range of $1k\Omega$ to $1M\Omega$ should be used if EN is pulled high by IN.

Fault-Protection Modes

Output Current Limit

With load current increasing, as soon as the FET current exceeds the peak-current-limit threshold, the FET will turn off. If the load current continues to increase, the output voltage will drop.

Overtemperature Protection (OTP)

Instant-PWM architecture includes overtemperature protection (OTP) circuitry to prevent overheating due to excessive power dissipation. This will shut down the

device when the junction temperature exceeds 150°C. Once the junction temperature cools by approximately 15°C, the device will resume normal operation after a complete soft-start cycle. For continuous operation, provide adequate cooling so that the junction temperature does not exceed the OTP threshold.

Application Information

The following paragraphs describe the selection process for the feedback resistors (R_H and R_L), input capacitor C_{IN} , output capacitor C_{OUT} , output inductor L, and rectifier diode D.

Feedback Resistor-Divider RH and RL

Choose R_H and R_L to program the proper output voltage. Choose large resistance values between $10k\Omega$ and $1M\Omega$ for both R_H and R_L to minimize power consumption under light loads. If V_{OUT} is 1.2V, a value of $100k\Omega$ is chosen for R_H , then using the following equation, R_L can be calculated as $100k\Omega$:

$$R_L = \frac{0.6V}{V_{\text{OUT}}\text{-}0.6V}R_H$$
FB
R_L
GND

Input Capacitor C_{IN}

For the best performance, select a typical X5R or better grade ceramic capacitor with greater than a 100V rsting and 1µF capacitance. The capacitor should be placed as close as possible to IN pin and the negative end of the rectifier. When selecting an input capacitor, be sure to select a voltage rating at least 20% greater than the maximum voltage of the input supply and a temperature rating higher than the system requirements. X5R series ceramic capacitors are most often selected due to their small size, low cost, surge-current capability, and high RMS current ratings over a wide temperature and voltage range. However, systems that are powered by a wall adapter or other long and therefore inductive cabling may be susceptible to significant inductive ringing at the input to the device. In these cases, consider adding some bulk capacitance like electrolytic, tantalum, or polymer type capacitors. Using a combination of bulk capacitors (to reduce overshoot or ringing) in parallel with ceramic

capacitors (to meet the RMS current requirements) is helpful in these cases.

Consider the RMS current rating of the input capacitor, paralleling additional capacitors if required to meet the calculated RMS ripple current.

$$I_{CIN-RMS} = I_{OUT} \times \sqrt{D \times (1-D)}$$

The worst-case condition occurs at D = 0.5, then

$$I_{CIN_RMS,MAX} = \frac{I_{OUT}}{2}$$

For simplicity, use an input capacitor with an RMS current rating greater than 50% of the maximum load current.

The input capacitor value determines the input voltage ripple of the converter. If there is a voltage ripple requirement in the system, choose an appropriate input capacitor that meets the specification.

Given the very low ESR and ESL of ceramic capacitors, the input voltage ripple can be estimated using the formula:

$$V_{CIN_RIPPLE,CAP} = \frac{I_{OUT}}{f_{SW} \times C_{IN}} \times D \times (1 - D)$$

The worst-case condition occurs at D = 0.5, then

$$V_{CIN-RIPPLE,CAP,MAX} = \frac{I_{OUT}}{4 \times f_{SW} \times C_{IN}}$$

The capacitance value is less important than the RMS current rating. A single 4.7µF X5R capacitor is sufficient in most applications.

Output Capacitor Cout

Select the output capacitor C_{OUT} to handle the output ripple requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting the component. For the best performance, use an X5R or better grade ceramic capacitor with capacitance greater than 22 μ F. The capacitance derating with DC voltage must be considered.

For applications where the design must meet stringent ripple requirements, the following considerations must be followed:

The output voltage ripple at the switching frequency is caused by the inductor current ripple (ΔI_L) on the output capacitor's ESR (ESR ripple), as well as the stored charge (capacitive ripple).

When calculating total ripple, consider both.

$$V_{RIPPLE,ESR} = \Delta I_L \times ESR$$

$$V_{RIPPLE,CAP} = \frac{\Delta I_L}{8 \times C_{OUT} \times f_{SW}}$$

The capacitive ripple might be higher because the effective capacitance for ceramic capacitors decreases with the voltage across the terminals. The voltage derating is usually included as a chart in the capacitor datasheet, and the ripple can be recalculated after taking the target output voltage into account.

Output Inductor L

Consider the following when choosing this inductor:

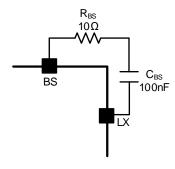
 Choose the inductance to provide a ripple current that is approximately 40% of the maximum output current. The recommended inductance is calculated as:

$$L = \frac{V_{OUT}(1 - V_{OUT} / V_{IN,MAX})}{f_{SW} \times I_{OUT MAX} \times 0.4}$$

where f_{SW} is the switching frequency and $I_{\text{OUT,MAX}}$ is the maximum load current.

The SY21034 has high tolerance for ripple current amplitude variation. As a result, the final choice of inductance can vary slightly from the calculated value with no significant performance impact.

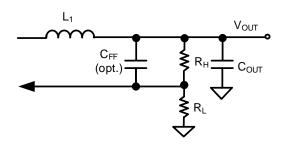
2) The inductor's saturation current rating must be greater than the peak inductor current under full load:


$$I_{SAT, \, MIN} > I_{OUT, \, MAX} + \frac{V_{OUT}(1\text{-}V_{OUT}/V_{IN, MAX})}{2 \times f_{SW} \times L}$$

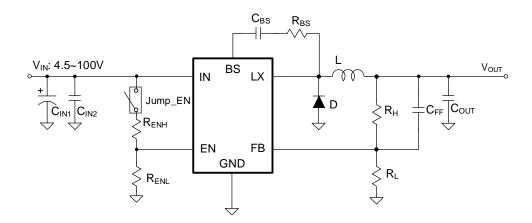
3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. Choose an inductor with DCR less than $50m\Omega$ to achieve good overall efficiency.

External Bootstrap Capacitor

The external bootstrap capacitor provides the gate driver voltage for the internal high-side MOSFET. A 100nF low-ESR ceramic capacitor connected between the BS pin and the LX pin is recommended.


Rectifier Diode

To accommodate the SY21034's high switching speed, choose a Schottky diode with low forward voltage and fast


switching speed. The diode's voltage rating must be higher than the SY21034's maximum output voltage, and the diode's average and peak current rating should exceed the SY21034's average output current and peak current.

Load-Transient Considerations

The SY21034 integrates the compensation components to achieve good stability and fast transient responses. In some applications, adding a 47pF ceramic capacitor in parallel with $R_{\rm H}$ may further speed up the load-transient responses and is therefore recommended for applications with large load-transient step requirements

Application Schematic (Vout = 5V)

BOM List

Reference Designator	Description	Part Number	Manufacturer
L,	47µH	CDRH8D43NP-470NC	Sumida
C _{IN1}	22µF/200V		
	(electrolytic capacitor)		
C _{IN2}	2.2µF/100V, 1206, X7R	GRM31CR72A225KA73L	mµRata
Соит	22µF/25V, 1206, X5R	C3216X5R1E226M	TDK
C _{FF}	47pF/50V, 0603, C0G	C1608C0G1H470J	TDK
C _{BS}	100nF/50V, 0603, X7R	C1608X7R1H104K	TDK
Rн	100kΩ, 1%, 0603		
R _L	13.7kΩ, 1%, 0603		
Renh	10kΩ, 1%, 0603		
R _{ENL}	1ΜΩ, 1%, 0603		
R _{BS}	10Ω, 1%, 0603		
D	3A/200V	SS320	

Recommended Component Values for Typical Applications

V _{OUT} (V)	R _H (kΩ)	$R_L(k\Omega)$	C _{FF} (pF)	L(Rated/Saturating Current)	Соит
5	100	13.7	47	47µH/CDRH8D43NP-470NC	22µF/25V, 1206, X5R
12	100	5.23	47	68µH/CDRH8D43NP-680NC	22µF/25V, 1206, X5R

Layout Design

Follow these PCB layout guidelines for optimal performance and thermal dissipation.

- Input Capacitors: Place the input capacitors very close to the IN and GND pins, minimizing the loop formed by these connections. The input capacitor should be connected to the IN and GND pins with a wide copper plane.
- Output Capacitors: Guarantee the C_{OUT} negative sides are connected to the GND pin by wide copper traces instead of vias, in order to achieve better accuracy and stability of the output voltage.
- Feedback Network: Place the feedback components (R_H, R_L, and C_{FF}) as close to the FB pin as possible. Avoid routing the feedback line near LX or other high-frequency signals, as it is noisesensitive. Use a Kelvin connection to connect with Cout rather than the inductor output terminal.

- **LX Connection:** Keep the LX area small to prevent excessive EMI, while providing a wide copper trace to minimize parasitic resistance and inductance.
- Control Signals: It is not recommended to connect control signals directly to V_{IN} . A resistor in the range of $1k\Omega$ to $1M\Omega$ should be used if the lines are pulled high to V_{IN} .
- GND Vias: Place an adequate number of vias on the GND layer around the device for better thermal performance. The exposed GND pad should be connected to a copper area larger than its size. Place multiple GND vias on it for heat dissipation.
- PCB Board: To achieve the best thermal and noise performance, maximize the PCB copper area connecting to the GND pin. A ground plane is highly recommended if board space allows. Connect the ground pad to a large copper area to enhance thermal performance.

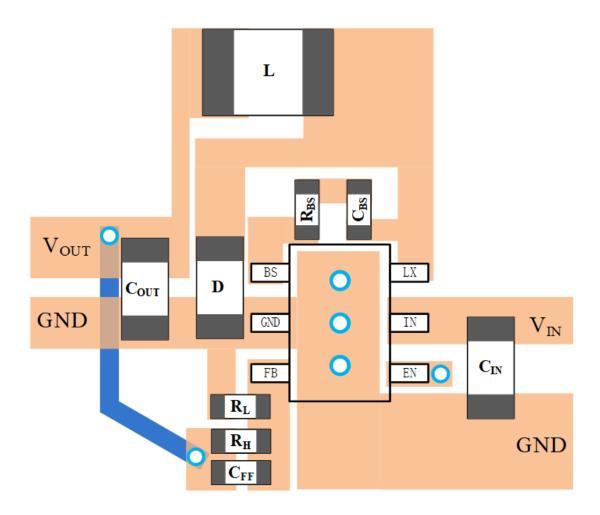
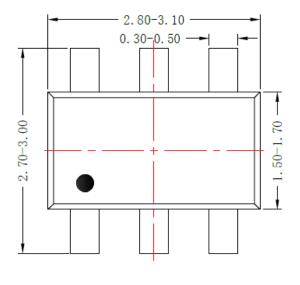
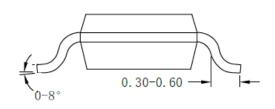
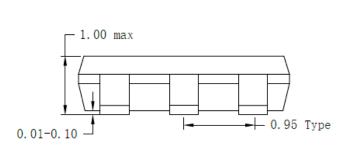
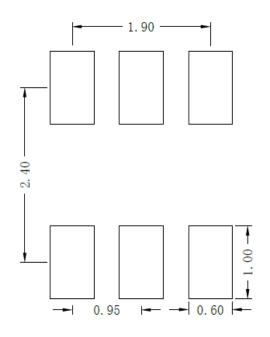




Figure 4. Suggested PCB Layout

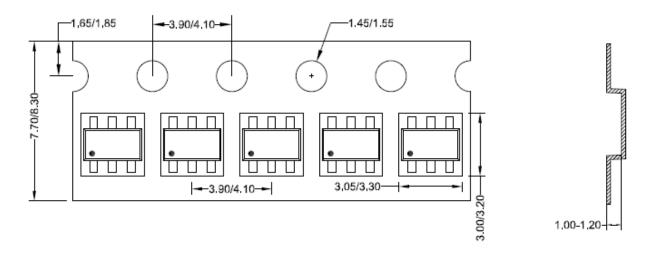

TSOT23-6 Package Outline and PCB Layout



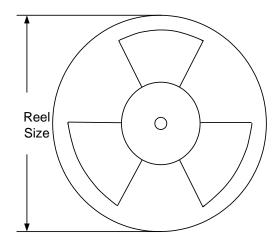
Top view

Side view

Front view


Recommended pad layout (reference only)

Note: All dimensions are in millimeters and exclude mold flash and metal burr.


Taping and Reel Specification

TSOT23-6 taping orientation

Feeding direction -----

Carrier tape and reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
TSOT23-6	8	4	7"	280	160	3000

Others: NA

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
Aug.31, 2023	Revision 1.0	Language improvements for clarity.
Nov.14, 2022	Revision 0.9E	Updated the lead width of package (Page 8)
Jan.18, 2022	Revision 0.9D	1. The Absolute Maximum Ratings of the FB pin changed from (-0.3V to V _{IN} +0.3V) to (-0.3V to 24V). (Page 3)
		2. Update the test conditions of FB Input Current in EC table.
Jun.10, 2021	Revision 0.9C	Update the test conditions for the EC table:
		V _{IN} changed from 20V to 48V
Jul. 03, 2020	Revision 0.9B	Add a 10Ω resistor in series with the ceramic capacitor between the BS and the LX pin.
Feb. 20, 2019	Revision 0.9A	Max. value of shutdown current changed from 14μA to 20μA in EC table (Page3)
Jul. 13, 2018	Revision 0.9	Initial Release

IMPORTANT NOTICE

- 1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- 3. **Limited warranty and liability.** Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- 5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- 6. **No offer to sell or license**. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2022 Silergy Corp.

All Rights Reserved.