

1.05V to 5.5V 2A Load Switch

General Description

The SY20806A is an ultra-low $R_{DS(ON)}$, N-channel MOSFET single channel load switch with controlled turn-ON slew rate for minimum power loss. The device has an input voltage range of 1.05 V to 5.5 V and can support a maximum continuous current of 2 A.

The SY20806A small size and ultra-low $R_{\rm DS(ON)}$ along with very low operating and shutdown currents makes it an ideal choice for space limited, battery powered applications.

In order to prevent the voltage droop during start-up with large capacitve loads, the part features a soft start circuit to reduce the inrush current.

SY20806A integrates a 120 Ω pull-down resistor for fast output discharge when the switch is open, further reducing the total solution size.

SY20806A uses a small, space saving 0.78mm ×0.78mm, 4-pin CSP package with 0.4mm pitch, and 0.5mm height.

The part is designed to operate between of -40 °C to+105 °C.

Features

- Input Voltage Range: 1.05V to 5.5V
- 2A Load Current Capability
- Ultra-low $R_{DS(ON)}$:
 - $37m\Omega(typ)$ at $V_{IN} = 5V$
 - $38m\Omega(typ)$ at $V_{IN} = 3.3V$
 - $43\text{m}\Omega(\text{typ})$ at $V_{\text{IN}} = 1.8\text{V}$
- Quiescent Current: 9.7μA (typ) at V_{IN}=3.3V
- Shutdown Current: 0.1 μ A (typ) at V_{IN} = 3.3V
- Controlled Slew Rate:
 - 910 μ s rise time at $V_{IN}=3.3V$
- Compact Package: CSP 0.78mm × 0.78mm.

Applications

- Notebook
- Cell Phone
- Digital Cameras
- IoT devices

Typical Application

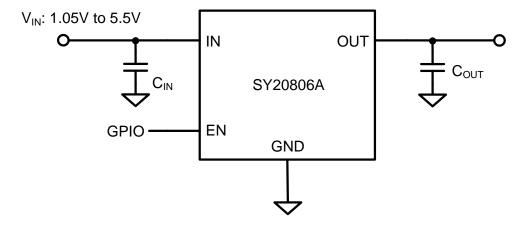
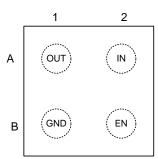


Figure 1. Schematic Diagram



Ordering Information

Ordering Part Number	Package Type	Top Mark
SY20806APAC	CSP0.78×0.78–4 RoHS Compliant and Halogen Free	hGxyz

x=year code, y=week code, z= lot number code

Pinout (top view)

Pin Name	Pin number	Pin Description		
IN	A2	Input pin, decoupled with at least a 1 µF MLCC capacitor to GND.		
GND	B1	Ground pin.		
OUT	A1	Output pin, decoupled with a 1 µF MLCC capacitor to GND.		
EN	B2	ON/OFF control. Do not leave it floating.		

Block Diagram

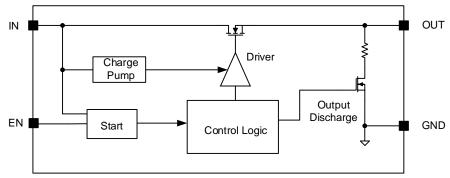


Figure 2. Block Diagram

Absolute Maximum Ratings (1)	Min	Max	Unit
IN, OUT, EN to GND	-0.3	6	V
Junction Temperature, Operating	-40	150	
Lead Temperature (Soldering, 10sec.)		260	${\mathcal C}$
Storage Temperature	-65	150	

Thermal Information (2)	Тур	Unit
θ _{JA} Junction-to-ambient Thermal Resistance	193	07/11/
θ_{JC} Junction-to-case Thermal Resistance	2.3	C/W
P_D Power Dissipation T_A =25 C	0.52	W

ESD Susceptibility	Min	Max	Unit
HBM (Human Body Mode)		2	kV
CDM (Charged Device Mode)		500	V
Recommended Operating Conditions (3)	Min	Max	Unit
IN	1.05	5.5	
OUT	0	$V_{\rm IN}$	V
EN	0	5.5	
Junction Temperature, Operating	-40	125	${\mathbb C}$
Ambient Temperature	-40	105	

Electrical Characteristics (Unless otherwise noted, the specification in the following table applies over the operating ambient temperature– $40^{\circ}\text{C} \leq \text{T}_{A} \leq +105^{\circ}\text{C}$. Typical values are for TA = 25 °C.)

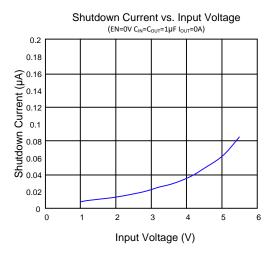
Parameter	Symbol	Test Conditions	TA	Min	Тур	Max	Unit
Oviacant Cumant	T	V -V -2 2V I -0A	-40 °C to +85 °C		9.7	12	μΑ
Quiescent Current I _Q		$V_{IN}=V_{EN}=3.3V$, $I_{OUT}=0A$	-40 ℃ to +105 ℃			13	μΑ
Shutdown Current	T	V -2 2V V -0V V -0V	-40 °C to +85 °C		0.1	2	μΑ
Shuldown Current	I_{SHDN}	$V_{IN}=3.3V, V_{EN}=0V, V_{OUT}=0V$	-40 ℃ to +105 ℃			3	μΑ
		V _{IN} =5V, I _{OUT} =200mA	25 ℃		37	41	mΩ
			-40 °C to +85 °C			51	mΩ
			-40 ℃ to +105 ℃			57	mΩ
		V _{IN} =3.3V, I _{OUT} =200mA	25 ℃		38	41	mΩ
			-40 °C to +85 °C			52	mΩ
			-40 ℃ to +105 ℃			58	mΩ
		V _{IN} =1.8V, I _{OUT} =200mA	25 ℃		43	48	mΩ
Switch On Resistance	R _{ON}		-40 °C to +85 °C			59	mΩ
			-40 ℃ to +105 ℃			66	mΩ
			25 ℃		52	59	mΩ
		V _{IN} =1.2V, I _{OUT} =200mA	-40 ℃ to +85 ℃			73	mΩ
			-40 ℃ to +105 ℃			85	mΩ
			25 ℃		63	75	mΩ
		V _{IN} =1.05V, I _{OUT} =200mA	-40 °C to +85 °C			102	mΩ
			-40 ℃ to +105 ℃			107	mΩ
EN Input Logic High	V_{IH}	V _{IN} =1.05V to 5.5V	25 ℃	1			V
EN Input Logic Low	V_{IL}	V _{IN} =1.05V to 5.5V	25 ℃			0.4	V

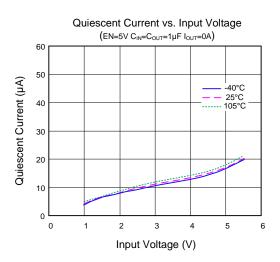
Electrical Characteristics (Unless otherwise noted, the specification in the following table applies over the operating							
ambient temperature– $40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$. Typical values are for TA = 25 °C.)							
Parameter	Symbol	Test Conditions T _A Min Typ Max					Unit
EN Hysteresis V _F	V _{HYS_EN}	V _{IN} =5.5V	25 ℃		102		mV
		V _{IN} =1.05V	25 ℃		92		mV
Discharge Resistance	R _{DSG}	$V_{IN}=V_{OUT}=3.3V, V_{EN}=0V$	-40 ℃ to +105 ℃		120	180	Ω

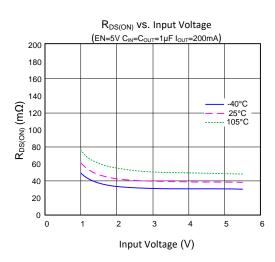
Switching Characteristics

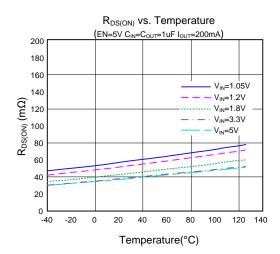
Refer to the timing test circuit in Figure 2 (unless otherwise noted) for references to external components used for the test condition in the switching characteristics table. Switching characteristics shown below are only valid for the power-up sequence where V_{IN} is already in steady state condition before the EN pin is asserted high.

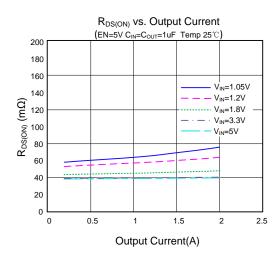
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
$V_{IN}=5V$, $V_{ON}=5V$, $T_A=25$ °C (Unless otherwise noted)								
Turn On Time	t_{ON}	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$ 1300			μs		
Turn Off Time	$t_{ m OFF}$	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$		2		μs		
V _{OUT} Rise Time	t_R	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$		1280		μs		
V _{OUT} Fall Time	t_{F}	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$		2		μs		
Delay Time	t_{D}	$R_L=10\Omega$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$		660		μs		
$V_{IN}=3.3V, V_{ON}=5V,$	$T_A=25~\%$ (Unless	ss otherwise noted)						
Turn On Time	t_{ON} $R_L=10\Omega$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$ 1080		1080		μs			
Turn Off Time	$t_{ m OFF}$	$R_{L}=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$ 2		2		μs		
V _{OUT} Rise Time	t_R	R_L =10 Ω , C_{IN} =1 μ F, C_{OUT} =0.1 μ F		910		μs		
V _{OUT} Fall Time	t_{F}	$R_L=10\Omega$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$		2		μs		
Delay Time	t_{D}	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$		620		μs		
$V_{IN}=1.05V, V_{ON}=5V$, $T_A=25$ °C (Unlo	ess otherwise noted)						
Turn On Time	$t_{\rm ON}$	R_L =10 Ω , C_{IN} =1 μ F, C_{OUT} =0.1 μ F		750		μs		
Turn Off Time	$t_{ m OFF}$	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$ 3			μs			
V _{OUT} Rise Time	t_R	$R_L=10\Omega, C_{IN}=1\mu F, C_{OUT}=0.1\mu F$ 410			μs			
V _{OUT} Fall Time	t_{F}	$R_L=10\Omega$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$	$R_L=10\Omega$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$			μs		
Delay Time	t_{D}	$R_L=10\Omega$, $C_{IN}=1\mu F$, $C_{OUT}=0.1\mu F$				μs		

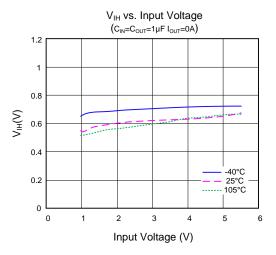

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

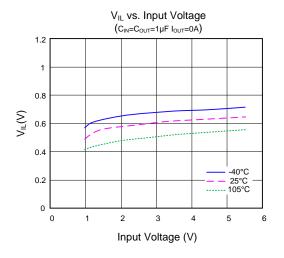

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25 \, \text{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

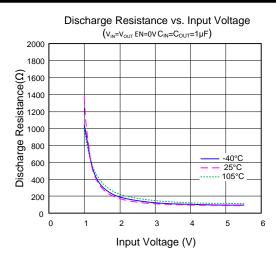

Note 3: The device is not guaranteed to function outside its operating conditions.

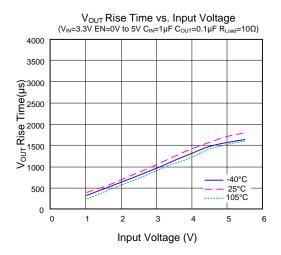


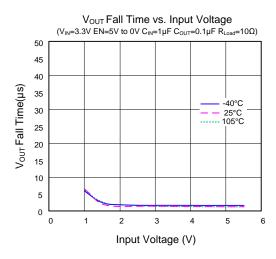

Typical Operating Characteristics

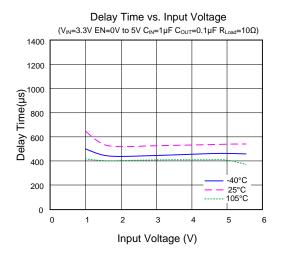


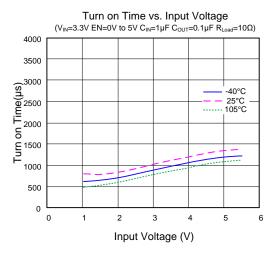


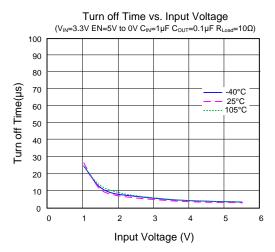


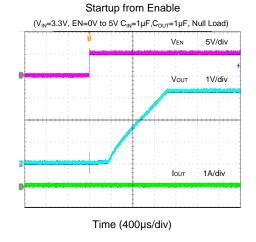


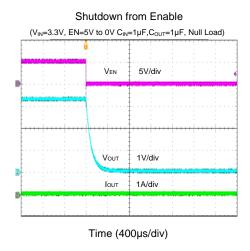


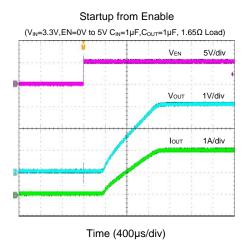


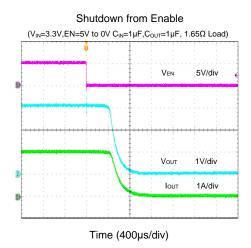












Operation

The SY20806A is an ultra-low $R_{DS(ON)}$, N-channel MOSFET single channel load switch with controlled slew rate for minimum power loss. The device has an input voltage range of 1.05 V to 5.5 V and can support a maximum continuous current of 2 A. The device is controlled by the EN input, which can directly interface with low-voltage control signals.

Application Information

Input Capacitor

To reduce device inrush current, a $1\mu F$ ceramic capacitor, C_{IN} , is recommended. A higher value of C_{IN} can be used to reduce the voltage drop experienced as the switch is turned ON into a large capacitive load. To optimize operation, C_{IN} should be placed as close as possible to the IN and GND pins.

Output Capacitor

A 1µF ceramic output cap is recommended to prevent parasitic board inductance from forcing OUT below GND when turning off.

Output Discharge

SY20806A integrates a 120 Ω (typ) pull-down resistor for fast output discharge when the switch is turned OFF, further reducing the size of the overall solution.

Application Schematic

BOM List

Designator	Description	escription Part Number	
C_1, C_2	1μF/50V, 0603, X5R	GRM188R61H105K	Murata
R_1	$1M\Omega$, 0603	RC0603FR-071ML	YAGEO

PCB Layout Guide

For best performance of the SY20806APAC, the following guidelines must be followed:

- ♦ Keep all power traces as short and wide as possible and use at least 1-ounce copper for all power traces.
- Place a ground plane under all circuitry to lower both resistance and inductance, and improve DC and transient performance.
- Place the output capacitors as close to the connectors as possible, to lower the impedance (mainly inductance) between the part and the capacitor and improve transient performance.
- Input and output capacitors should be placed closed to the IC and connected to ground plane to reduce noise coupling.

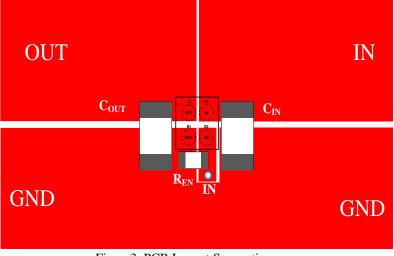
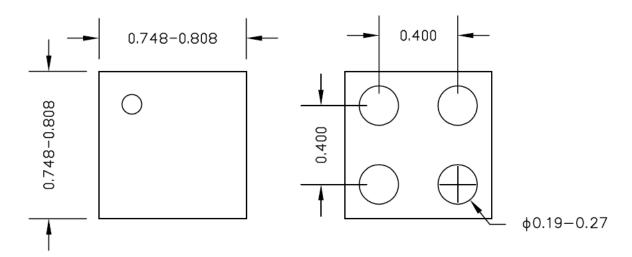
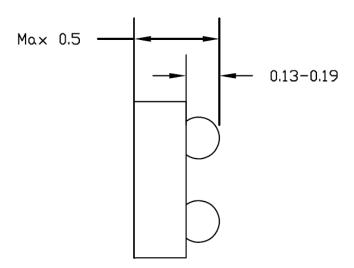



Figure 3. PCB Layout Suggestion

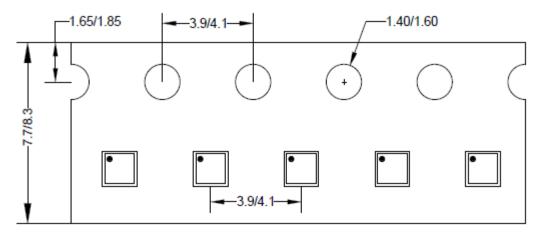


CSP0.78×0.78-4 Package Outline

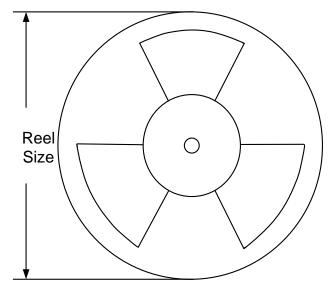
Top View

Bottom View

Side View


Notes: All dimension in millimeter and exclude mold flash & metal burr.

Taping & Reel Specification


1. Taping orientation

CSP0.78×0.78

Feeding direction

2. Carrier Tape & Reel specification for packages

Package type	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
CSP0.78×0.78	8	4	7''	400	160	5000

3. Others: NA

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
Aug.20, 2021	Revision 1.0	Production Release.
Aug.14, 2020	Revision 0.9	Initial Release.

IMPORTANT NOTICE

- 1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- 3. **Limited warranty and liability.** Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- 5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- 6. **No offer to sell or license**. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

©2023 Silergy Corp. All Rights Reserved.