
Applications Note: SY22652Z

DC/DC Flyback Controller with Primary Side Control for LED Lighting and Analog Dimming mode

General Description

The SY22652Z is a DC/DC controller targeting at LED Dimming applications, which can achieve up to 2.5% dimming level and high precision for all loading range. It is a primary side controller without applying any secondary feedback circuit for low cost, and drives the converter in the quasi-resonant mode to achieve higher efficiency. It keeps the converter in peak current control to achieve low power frequency ripple.

Ordering Information

Ordering Number	Package type	Note
SY22652ZFAC	SO8	

Features

- 2.5%~100.0% Dimming Range.
- CV Mode for Bias Supply when PWM=0.0%.
- Primary Side Control Eliminates the Opto-coupler.
- Valley Turn-on of the Primary MOSFET to Achieve Low Switching Losses
- 200mA Sourcing Current and 600mA Sinking Current Drive Capability
- Low Start up Current: 34μA Typical
- Reliable Short LED and Open LED Protection
- Low Power Frequency Ripple
- Compact Package: SO8

Applications

• LED Dimming

Typical Applications

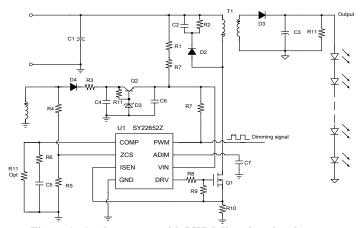


Figure.1a Analog output with PWM dimming signal

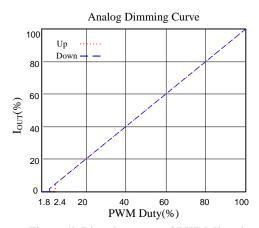
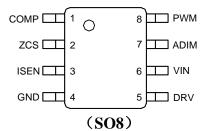



Figure.1b Dimming curve of PWM dimming

Pinout (top view)

Top Mark: CFQxyz (device code: CFQ, x=year code, y=week code, z= lot number code)

Pin Name	Pin number	Pin Description
COMP	1	Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.
ZCS	2	Inductor current zero-crossing detection pin. This pin receives the auxiliary winding voltage by a resister divider and detects the inductor current zero crossing point. This pin also provides over voltage protection, line regulation modification function and CV detection simultaneously. If the voltage on this pin is above V _{ZCS,OVP} , the IC would enter over voltage protection mode.
ISEN	3	Current sense pin. Connect this pin to the source of the primary switch. Connect the sense resistor across the source of the primary switch and the GND pin. $ (\text{current sense resister } R_S : R_S = k \frac{V_{\text{REF}} \times N_{PS}}{I_{\text{OUT}}} \; , \; k = 0.167) $
GND	4	Ground pin
DRV	5	Gate driver pin. Connect this pin to the gate of primary MOSFET.
VIN	6	Power supply pin. This pin also provides output over voltage protection along with ZCS pin.
ADIM	7	Bypass this pin to GND with enough capacitance to hold on internal voltage reference.
PWM	8	PWM dimming input pin, this pin detects the PWM dimming signal

Absolute Maximum Ratings (Note 1)

$oldsymbol{O}$ \ $^{\prime}$	
VIN, DRV	
Supply current I _{VIN}	7mA
PWM	
ADIM, ZCS	
ISEN, COMP	
Power Dissipation, @ T _A = 25 °C SO8	1.1W
Package Thermal Resistance (Note 2)	
SO8, θ_{JA}	88 °C/W
SO8, θ _{JC}	45 °C/W
Junction Temperature Range	
Lead Temperature (Soldering, 10 sec.)	260 ℃
Storage Temperature Range	

$\boldsymbol{Recommended\ Operating\ Conditions\ (Note\ 3)}$

Block Diagram

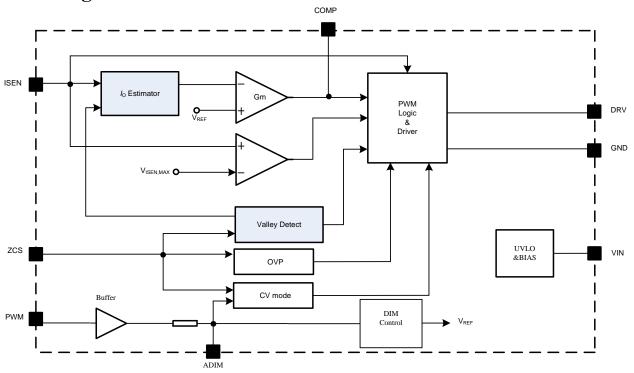


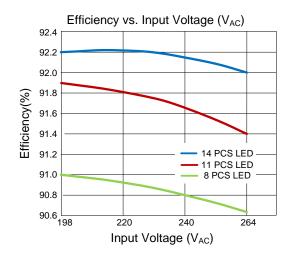
Figure.2 Block Diagram

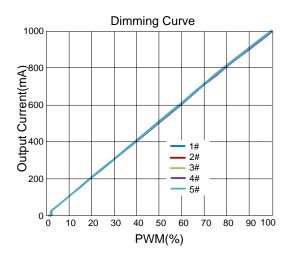
Electrical Characteristics

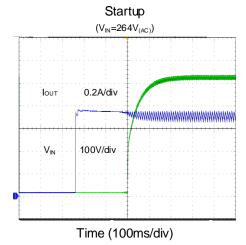
 $(V_{IN} = 12V \text{ (Note 3)}, T_A = 25 \text{ } \text{C} \text{ unless otherwise specified)}$

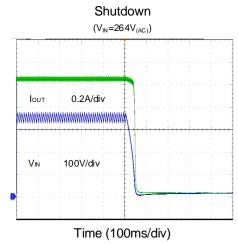
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section						
VIN Turn-on Threshold	V_{VIN_ON}		19.5	20.5	22	V
VIN Turn-off Threshold	V _{VIN_OFF}		6.7	7.3	8.0	V
VIN OVP Voltage	V_{VIN_OVP}			V_{IN_ON} +4		V
Start up Current	I_{ST}	$V_{VIN} < V_{VIN_ON}$	24	34	46	μΑ
Discharge Current in OVP Mode	I _{VIN_OVP}	V _{VIN} =12V (Note 4)	5	7	10	mA
Error Amplifier Section						
Internal Reference Voltage	V _{REF}		588	600	612	mV
Current Sense Section						
Current Limit Reference Voltage	V _{ISEN_MAX}		0.300	0.375	0.450	V
ZCS Pin Section						
ZCS Pin OVP Voltage Threshold	V _{ZCS_OVP}		1.43	1.5	1.57	V
Gate Driver Section						
Gate Driver Voltage	V _{Gate}		9.5	12	14.5	V
Maximum Source Current	I _{SOURCE}		150	200	250	mA
Minimum Sink Current	I _{SINK}		500	600	800	mA
Max ON Time	T _{ON_MAX}			24		μs
Min ON Time	T _{ON_MIN}			450		ns
Max OFF Time	T _{OFF_MAX}			60		μs
Min OFF Time	T _{OFF_MIN}			1.5		μs
Maximum Switching Frequency	F _{MAX}			120		kHz
ADIM Function Section						
ADIM Enable ON	V _{ADIM_ON}		32	42	52	mV
ADIM Enable OFF	V _{ADIM_OFF}		20	32	42	mV
Thermal Section						
Thermal Fold back Temperature	T_{FB}			150		\mathcal{C}
Thermal Shut down Temperature	T_{SD}			160		\mathcal{C}
PWM Function Section						
PWM ON Voltage	V _{PWM_ON}				1.2	V
PWM OFF Voltage	V _{PWM_OFF}		0.5			V

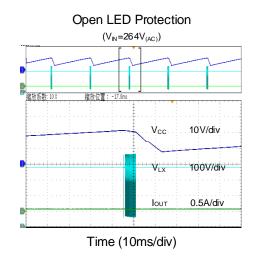
Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

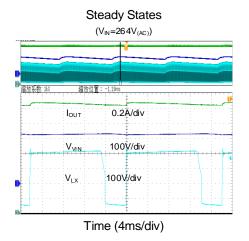

Note 2: Θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.


Note 3: Increase VIN pin voltage gradually higher than $V_{VIN,ON}$ voltage then turn down to 12V.


Note 4: Increase VIN pin voltage gradually higher than $V_{VIN,OVP}$ voltage then turn down to 12V.




Typical Performance Characteristic



Operation

The SY22652Z is a DC/DC controller targeting at LED Dimming applications, which can achieve up to 2.5% dimming level and high precision for all loading range.

It is a primary side controller without applying any secondary feedback circuit for low cost and minimizing the board size.

SY22652Z is compatible with analog dimming and PWM dimming for different application.

It keeps the converter in peak current control to achieve low power frequency ripple.

In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the power MOSFET at voltage

the startup current of SY22652Z is rather small (34µA) typically) to reduce the standby power loss further.

SY22652Z provides reliable protections such as Short Circuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.

SY22652Z is available with SO8 package.

Applications Information

Start up

After DC BUS is powered on, the capacitor C_{VIN} between VIN and GND pin is charged up by BUS voltage through a start-up resistor R_{ST} . Once V_{VIN} rises up to $V_{VIN ON}$, the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of transformer could supply enough energy to maintain V_{VIN} above V_{VIN_OFF}.

The whole start up procedure is divided into four sections shown in Fig.4. t_{STC} is the C_{VIN} charged up section, and t_{STO} is the output voltage build-up section. The start-up time t_{ST} is composed of t_{STC} and t_{STO} , and usually t_{STO} is much smaller than t_{STC} .

t_{STO} is fast start-up stage, which will help to create output voltage quickly. After t_{STO} , if V_{ADIM} is less than V_{ADIM_ON} , IC enters into CV mode. When V_{ADIM} is larger than V_{ADIM ON}, IC works in peak current mode.

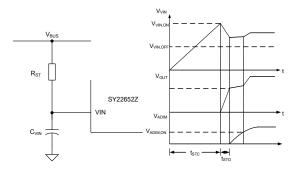


Fig.4 Start up

The start up resistor R_{ST} and C_{VIN} are designed by rules as below:

(a) Preset start-up resistor R_{ST} , make sure that the current through R_{ST} is larger than I_{ST} and smaller than 1mA.

$$\frac{V_{\text{BUS}}}{1\text{mA}} < R_{\text{ST}} < \frac{V_{\text{BUS}}}{I_{\text{ST}}}$$
 (1)

Where V_{BUS} is the BUS line voltage

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{VIN} = \frac{\left(\frac{V_{BUS}}{R_{ST}} - I_{ST}\right) \times t_{ST}}{V_{VIN, ON}}$$
(2)

(d) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} and decrease R_{ST} , go back to step (a) and redo such design flow until the ideal start up procedure is obtained.

Internal pre-charge design for quick start up

In P3, V_{COMP} is pre-charged by internal current source until it is over the initial voltage V_{COMP_IC} . V_{COMP_IC} can be programmed by R_{COMP}. Such design is meant to reduce the start up time shown in Fig.5.

The voltage pre-charged V_{COMP IC} in start-up procedure can be programmed by R_{COMP}:

$$V_{\text{COMP IC}} = 0.9 \text{V} - 300 \mu \text{A} \times R_{\text{COMP}}$$
(3)

Where $V_{COMP\ IC}$ is the pre-charged voltage of COMP pin.

Generally, a small capacitance of C_{COMP} is necessary to stabilize the system loop (10nF is recommended).

The voltage pre-charged in start-up procedure can be programmed by R_{COMP}; On the other hand, larger R_{COMP} can provide larger phase margin for the control loop; A small ceramic capacitor is added to suppress high frequency interruption (10pF~100pF is recommended if necessary)

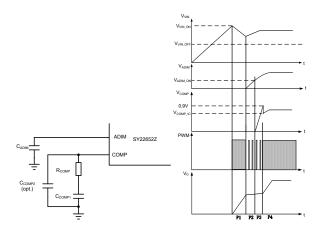


Fig.5 Pre-charge scheme in start up

Shut down

After DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of the transformer cannot supply enough energy to VIN pin, V_{VIN} will drop down. Once V_{VIN} is below V_{VIN_OFF} , the IC will stop working and V_{COMP} will be discharged to zero.

Primary side constant current control

Primary side control is applied to eliminate secondary feedback circuit and opto-coupler, which reduces the BOM cost. The switching waveforms are shown in Fig.6.

The output current I_{OUT} can be represented by,

$$I_{OUT} = \frac{I_{SP}}{2} \times \frac{t_{DIS}}{t_{S}} \tag{4}$$

Where I_{SP} is the peak current of the secondary side; t_{DIS} is the discharge time of the transformer; t_s is the switching period.

The secondary peak current is related with primary peak current, if the effect of the leakage inductor is neglected.

$$I_{SP} = N_{PS} \times I_{PP} \tag{5}$$

Where N_{PS} is the turn ratio of primary to secondary of the transformer.

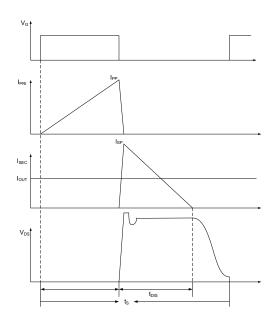


Fig.6 Switching waveforms

Thus, I_{OUT} can be represented by

$$I_{OUT} = \frac{N_{PS} \times I_{PP}}{2} \times \frac{t_{DIS}}{t_s}$$
 (6)

The primary peak current IPP and inductor current discharge time t_{DIS} can be detected by ISEN and ZCS pin, which is shown in Fig.7. These signals are processed and applied to the negative input of the gain modulator. In static state, the positive and negative inputs are equal.

$$V_{REF} = I_{PP} \times R_{S} \times \frac{t_{DIS}}{t_{S}} \times k_{I}$$
 (7)

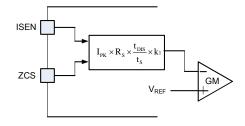


Fig.7 Output current detection diagram

Finally, the output current I_{OUT} can be represented by

$$I_{OUT} = \frac{V_{REF} \times N_{PS}}{R_{S} \times 2 \times k_{I}}$$
 (8)

Where k_1 is the output current weight coefficient; k_2 is the output modification coefficient; V_{REF} is the internal reference voltage; R_S is the current sense resistor.

 k_{I} and V_{REF} are all internal constant parameters, I_{OUT} can be programmed by N_{PS} and R_{S} .

$$Rs = \frac{V_{REF} \times N_{PS}}{I_{OUT} \times 2 \times k_1}$$
 (9)

Then

$$R_{S} = \frac{k \times V_{REF} \times N_{PS}}{I_{OUT}}, k = \frac{1}{2k_{1}}$$

$$(10)$$

Quasi-Resonant Operation

QR mode operation provides low turn-on switching losses for the converter.

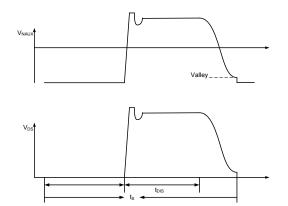


Fig.8 QR mode operation

The voltage across drain and source of the primary MOSFET is reflected by the auxiliary winding of the Flyback transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage across drain and source of the primary MOSFET is at voltage valley, the MOSFET would be turned on.

CV Mode

When PWM<1.8%, IC still need bias power:

- (1) If Dimming signal is greater than 2.4%, IC always works at CC mode.
- (2) If Dimming signal is lower than 1.8%, CV mode is triggered. IC works in CV mode to maintain V_{ZCS} nearby $V_{ZCS\ CV}$ (0.5V). N_P : N_{AUX} and R_{ZCS} can be adjusted to

prevent LED flicker and keep bias supply enough at CV mode.

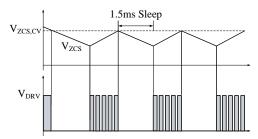


Figure.9 The working process of CV mode

In CV mode, which is shown in Fig.9.

- (1) If V_{ZCS} is greater than $V_{ZCS_CV}(0.5V)$, IC will sleep for 1.5ms.
- (2) After 1.5mS sleep, if V_{ZCS} is smaller than $V_{ZCS CV}$, IC will work until V_{ZCS} is greater than V_{ZCS} CV. During this time, MOSFET turns on by QR and turns off until the ISEN voltage reach 0.05V.

The output of CV can be calculated as below:

$$V_{OUT,CV} = 0.5V \times \left(\frac{R_{ZCSU} + R_{ZCSD}}{R_{ZCSD}}\right) \times \frac{N_S}{N_{AUX}}$$
(11)

Where, R_{ZCSU} is the upper resistor of ZCS pin; R_{ZCSD} is the down resistor of ZCS pin; N_S and N_{AUX} are the turns of secondary winding and auxiliary winding separately.

Over Voltage Protection (OVP) & Open LED Protection (OLP)

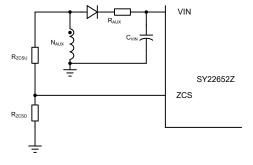


Fig.10 OVP&OLP

The output voltage is reflected by the auxiliary winding voltage of the Flyback transformer, and both ZCS pin and VIN pin provide over voltage protection function. When the load is null or large transient happens, the output voltage will exceed the rated value. When V_{VIN} exceeds V_{VIN_OVP} or V_{ZCS} exceeds V_{ZCS_OVP} , the over voltage protection is triggered and the IC will discharge V_{VIN} by an internal current source. Once V_{VIN} is below

V_{VIN OFF}, the IC will shut down and be charged again by BUS voltage through start up resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

Thus, the turns of the auxiliary winding N_{AUX} and the resistor divider is related with the OVP function.

$$\frac{V_{ZCS_OVP}}{V_{OVP}} = \frac{N_{AUX}}{N_S} \times \frac{R_{ZCSD}}{R_{ZCSU} + R_{ZCSD}}$$
(12)

$$\frac{V_{\text{VIN_OVP}}}{V_{\text{OVP}}} \ge \frac{N_{\text{AUX}}}{N_{\text{S}}} \tag{13}$$

Where V_{OVP} is the output over voltage specification; R_{ZCSU} and R_{ZCSD} compose the resistor divider. The turn ratio of N_{S} to N_{AUX} and the ratio of R_{ZCSU} to R_{ZCSD} could be induced from equation (12) and (13).

Short Circuit Protection (SCP)

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so valley signal cannot be detected by VSEN. Without valley detection, MOSFET cannot be turned ON until maximum off time T_{OFF MAX} is matched. If MOSFET is turned ON by T_{OFF MAX} 64 times continuously, IC will be shut down and enter into hiccup mode.

If the output voltage is not low enough to disable valley detection in short condition, V_{VIN} will drop down without auxiliary winding supply. Once V_{VIN} is below V_{VIN} OFF, the IC will shut down and be charged again by the BUS voltage through the start-up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.

In order to guarantee SCP function is not effected by voltage spike of auxiliary winding, a filter resistor R_{AUX} is needed (10Ω typically) shown in Fig. 10.

Dimming Mode

SY22652Z supports PWM input and 0~1.75V input.

1). $0 \sim 1.75 \text{V}$ input dimming:

If V_{ADIM} is lower than $V_{ADIM,OFF}$ (32mV), the output current is decreased to zero; While V_{ADIM} is increased from V_{ADIM_OFF} to V_{ADIM_ON} (42mV), the output current is created and the value is 2.5 percent of full load output

current; When V_{ADIM} is higher than 1.75V, the output current is 100 percent of full load output current;

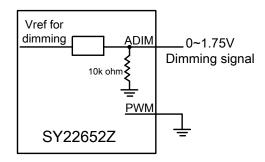


Fig.12 0~1.75V input dimming

As showed below, the available dimming range of V_{ADIM} is from 42mV to 1750mV.

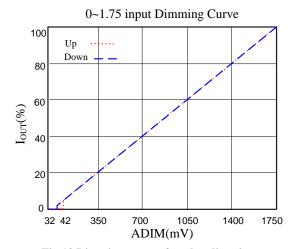


Fig.13 Dimming curve of analog dimming

2) .PWM input dimming

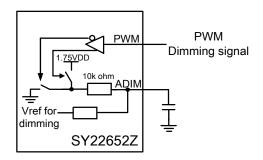


Fig.14 PWM input dimming

If the dimming signal is PWM signal, as showed above, there is a RC filter to convert the signal.

When the voltage of PWM pin is higher than V_{PWM_ON} , the dimming signal is sensed as high logic level, and ADIM pin is pulled up to 1.75V by a $10k\Omega$ resistor; when the voltage of PWM pin is lower than V_{PWM_OFF} , the dimming signal is sensed as low logic level, and ADIM pin is pulled down to GND by a $10k\Omega$ resistor.

The duty cycle of PWM signal is reflected by the voltage on ADIM pin V_{ADIM} .

$$V_{ADIM} = D_{PWM} \times 1.75V \tag{17}$$

So the relationship between the output current and the PWM input is showed below:

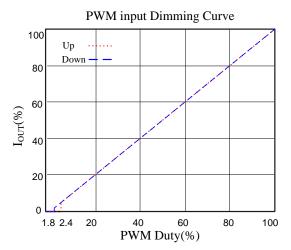


Fig.15 the dimming curve of PWM input

3) .ADIM capacitor

A capacitor C_{ADIM} need be connected across ADIM and GND pin to obtain a smooth voltage waveform of the dimming signal duty cycle. C_{ADIM} is selected by (for 1KHz PWM, 1uF typically)

$$C_{ADIM} \ge \frac{10^{-3}}{f_{DIM}} F \cdot Hz \tag{18}$$

 f_{DIM} is the frequency of PWM dimming signal.

4) For further dimming depth

For further dimming depth, R_P is added to achieve it and 2M is recommended.

As shown in the figure below, SY22652Z can achieve the application of dimming depth less than 2.5%.

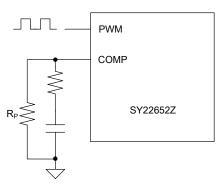


Fig.16 Further dimming depth circuit

Power Device Design

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and secondary power diode is maximized;

$$V_{\text{MOS DS MAX}} = V_{\text{DC MAX}} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D F}}) + \Delta V_{\text{S}}$$
 (19)

$$V_{D_R_MAX} = \frac{V_{DC_MAX}}{N_{PS}} + V_{OUT}$$
 (20)

Where V_{DC_MAX} is the maximum input DC voltage; N_{PS} is the turn ratio of the Flyback transformer; V_{OUT} is the rated output voltage; V_{D_F} is the forward voltage of secondary power diode; ΔV_S is the overshoot voltage clamped by RCD snubber during OFF time.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

$$I_{MOS_PK_MAX} = I_{P_PK_MAX}$$
 (21)

$$I_{MOS\ RMS\ MAX} = I_{P\ RMS\ MAX}$$
 (22)

$$I_{D_{PK_MAX}} = N_{PS} \times I_{P_PK_MAX}$$
 (23)

$$I_{D \text{ AVG}} = I_{OUT} \tag{24}$$

Where $I_{P_PK_MAX}$ and $I_{P_RMS_MAX}$ are maximum primary peak current and RMS current, which will be introduced later.

Transformer (N_{PS} and L_{M})

 N_{PS} is limited by the electrical stress of the power MOSFET:

$$N_{PS} \le \frac{V_{MOS_(BR)DS} \times 90\% - V_{DC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D.F}}$$
(25)

Where $V_{MOS_(BR)DS}$ is the breakdown voltage of the power MOSFET.

In Quasi-Resonant mode, each switching period cycle t_S consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 are shown as Fig.16.

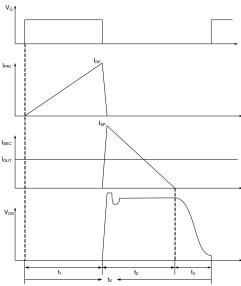


Fig.16 switching waveforms

The ON time increases with the decreasing of input DC voltage and the increasing of load. When the operation condition is with minimum input DC voltage and full load, the ON time is maximized. Thus, the minimum switching frequency f_{S_MIN} happens at the minimum input DC voltage and maximum load (maximum output current); meanwhile, the maximum peak current through MOSFET and the transformer happens.

Once the minimum frequency f_{S_MIN} is set, the inductance of the transformer could be induced. The design flow is shown as below:

(a)Select N_{PS}

$$N_{PS} \le \frac{V_{MOS_(BR)DS} \times 90\% - V_{DC_MAX} - \Delta V_{S}}{V_{OUT} + V_{D.E}}$$
(26)

- **(b)** Preset minimum frequency f_{S_MIN}
- (c) Compute relative t_S , t_1 (t_3 is omitted to simplify the design here)

$$t_{S} = \frac{1}{f_{S,MIN}} \tag{27}$$

$$t_{1} = \frac{t_{S} \times N_{PS} \times (V_{OUT} + V_{D_{_F}})}{V_{DC MIN} + N_{PS} \times (V_{OUT} + V_{D_{_F}})}$$
(28)

(d) Design inductance L_M

$$L_{\rm M} = \frac{V_{\rm DC_MIN}^2 \times t_1^2 \times \eta}{2 \times P_{\rm OUT} \times t_{\rm s}}$$
 (29)

(e) Compute t₃

$$t_3 = \pi \times \sqrt{L_M \times C_{Drain}}$$
 (30)

Where C_{Drain} is the parasitic capacitance at drain of MOSFET.

(f) Compute primary maximum peak current $I_{P_PK_MAX}$ and RMS current $I_{P_RMS_MAX}$ for the transformer fabrication.

$$\begin{split} I_{P_PK_MAX} &= \frac{P_{OUT} \times [\frac{L_{M}}{V_{DC_MIN}} + \frac{L_{M}}{N_{PS} \times (V_{OUT} + V_{D_F})}]}{L_{M} \times \eta} \\ &+ \frac{\sqrt{P_{OUT}^{2} \times [\frac{L_{M}}{V_{DC_MIN}} + \frac{L_{M}}{N_{PS} \times (V_{OUT} + V_{D_F})}]^{2} + 2L_{M} \times \eta \times P_{OUT} \times t_{3}}}{L_{M} \times \eta} (31) \end{split}$$

Where η is the efficiency; P_{OUT} is rated full load power

Adjust t_1 and t_S to t_1 ' and t_S ' considering the effect of t_3

$$t_{s}' = \frac{\eta \times L_{M} \times I_{P_PK_MAX}^{2}}{2P_{OUT}}$$
(32)

$$t_{1}' = \frac{L_{M} \times I_{P_PK_MAX}}{V_{DC_MIN}}$$
(33)

$$I_{P_RMS_MAX} \approx \sqrt{\frac{t_1'}{3t_S'}} \times I_{P_PK_MAX}$$
 (34)

(g) Compute secondary maximum peak current $I_{S_PK_MAX}$ and RMS current $I_{S_RMS_MAX}$ for the transformer fabrication.

$$I_{S PK MAX} = N_{PS} \times I_{P PK MAX}$$
(35)

$$t_{2} = t_{S} - t_{1} - t_{3}$$
 (36)

$$I_{S_RMS_MAX} \approx \sqrt{\frac{t_2'}{3t_S'}} \times I_{S_PK_MAX}$$
 (37)

Transformer design (N_P,N_S,N_{AUX})

The design of the transformer is similar with ordinary Flyback transformer. The parameters below are necessary:

Necessary parameters	
Turns ratio	N_{PS}
Inductance	$L_{\rm M}$
Primary maximum current	$I_{P_PK_MAX}$
Primary maximum RMS current	$I_{P_RMS_MAX}$
Secondary maximum RMS current	$I_{S_RMS_MAX}$

The design rules are as followed:

- (a) Select the magnetic core style, identify the effective area $A_{\rm e}$
- (b) Preset the maximum magnetic flux ΔB

 $\Delta B=0.22\sim0.26T$

(c) Compute primary turn N_P

$$N_{p} = \frac{L_{M} \times I_{P_PK_MAX}}{\Delta B \times A_{e}}$$
 (38)

(d) Compute secondary turn N_S

$$N_{S} = \frac{N_{P}}{N_{PS}} \tag{39}$$

(e) Compute auxiliary turn N_{AUX}

$$N_{AUX} = N_S \times \frac{V_{VIN}}{V_{OUT}}$$
(40)

Where V_{VIN} is the working voltage of VIN pin (12V~15V is recommended).

(f) Select an appropriate wire diameter

With $I_{P-RMS-MAX}$ and $I_{S-RMS-MAX}$, select appropriate wire to make sure the current density ranges from $4A/mm^2$ to $10A/mm^2$

(g) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

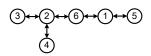
RCD snubber for MOSFET

The power loss of the snubber P_{RCD} is evaluated first

$$P_{\text{RCD}} = \frac{N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D_F}}) + \Delta V_{\text{S}}}{\Delta V_{\text{S}}} \times \frac{L_{\text{K}}}{L_{\text{M}}} \times P_{\text{OUT}}$$
(41)

Where N_{PS} is the turns ratio of the Flyback transformer; V_{OUT} is the output voltage; V_{D_F} is the forward voltage of the power diode; ΔV_S is the overshoot voltage clamped by RCD snubber; L_K is the leakage inductor; L_M is the inductance of the Flyback transformer; P_{OUT} is the output power.

The R_{RCD} is related with the power loss:


$$R_{RCD} = \frac{(N_{PS} \times (V_{OUT} + V_{D_{_F}}) + \Delta V_{S})^{2}}{P_{RCD}}$$
(42)

The C_{RCD} is related with the voltage ripple of the snubber $\Delta V_{C\ RCD}$:

$$C_{RCD} = \frac{N_{PS} \times (V_{OUT} + V_{D,F}) + \Delta V_{S}}{R_{RCD} f_{S} \Delta V_{C,RCD}}$$
(43)

Layout

- (a) To achieve better EMI performance and reduce line frequency ripples, line capacitor should be connected to near the switching circuit.
- (b) The circuit loop of all switching circuit should be kept small: primary power loop, secondary loop and auxiliary power loop.
- (c) Bias supply trace should be connected to the bias supply capacitor first instead of GND pin. The bias supply capacitor should be put beside the IC.
- (d) Loop of 'Source pin current sample resistor GND pin' .should be kept as small as possible.
- (e) The resistor divider is recommended to be put beside the IC.
- (f) The connection of ground is recommended as:

Ground ①: ground of BUS line capacitor

Ground ②: ground of bias supply capacitor and GND pin

Ground ⑤: primary ground node of Y capacitor.

Ground 3: ground node of auxiliary winding

Ground **6**: ground of current sample resistor.

Ground @: ground of signal trace except GND pin

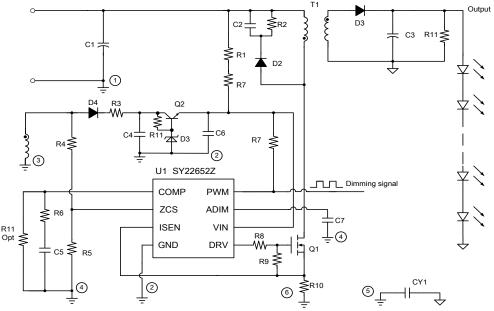


Fig.17 Ground Layout

Design Example

A design example of typical application is shown below step by step.

#1. Identify design specification

Design Specification			
$V_{DC}(RMS)$	380V~450V	V_{OUT}	42V
I_{OUT}	1000mA	η	92%

#2. Transformer design (N_{PS}, L_M)

Refer to Power Device Design

Conditions			
$V_{ m DC_MIN}$	380V	V_{AC_MAX}	450V
$^{\vartriangle}V_{\mathrm{S}}$	50V	V _{MOS_(BR)DS}	650V
P _{OUT}	42W	$V_{\mathrm{D,F}}$	1V
C_{Drain}	100pF	f_{S_MIN}	55kHz

(a) Compute turns ratio N_{PS} first

$$\begin{split} N_{PS} & \leq \frac{V_{MOS_(BR)DS} \times 90\% \text{--}V_{DC_MAX} \text{--}\Delta V_S}{V_{OUT} + V_{D,F}} \\ & = \frac{700V \times 0.9 \text{--}450V \text{--}50V}{42V + 1V} \\ & = 3.605 \end{split}$$

 N_{PS} is set to

$$N_{PS} = 3$$

(b)f_{S_MIN} is preset

$$f_{S.MIN} = 55kHz$$

(c) Compute the switching period t_S and ON time t_1 at the peak of input voltage.

$$t_s = \frac{1}{f_{s_MIN}} = 18.18 \mu s$$

$$\begin{split} t_{1} &= \frac{t_{S} \times N_{PS} \times (V_{OUT} + V_{D_F})}{V_{DC_MIN} + N_{PS} \times (V_{OUT} + V_{D_F})} \\ &= \frac{18.18 \mu s \times 3.0 \times (42 V + 1 V)}{380 V + 3.0 \times (42 V + 1 V)} \\ &= 4.608 \mu s \end{split}$$

(d) Compute the inductance L_M

$$\begin{split} L_{\text{M}} &= \frac{V_{\text{DC_MIN}}^2 \times t_1^2 \times \eta}{2P_{\text{OUT}} \times t_s} \\ &= \frac{380V^2 \times 4.608 \mu \text{s}^2 \times 0.92}{2 \times 42W \times 18.18 \mu \text{s}} \\ &= 1847 \mu \text{H} \end{split}$$

Set

$$L_{\rm M}$$
=1800 μH

(e) Compute the quasi-resonant time t₃

$$t_3 = \pi \times \sqrt{L_M \times C_{Drain}}$$
$$= \pi \times \sqrt{1800 \mu H \times 100 pF}$$
$$\approx 1333 ns$$

(f) Compute primary maximum peak current I_{P PK MAX}

$$\begin{split} I_{P_{PK_MAX}} = & \frac{P_{OUT} \times [\frac{L_{M}}{V_{DC_MIN}} + \frac{L_{M}}{N_{PS} \times (V_{OUT} + V_{D_F})}]}{L_{M} \times \eta} + \frac{\sqrt{P_{OUT}^{2} \times [\frac{L_{M}}{V_{DC_MIN}} + \frac{L_{M}}{N_{PS} \times (V_{OUT} + V_{D_F})}]^{2} + 2L_{M} \times \eta \times P_{OUT} \times t_{3}}}{L_{M} \times \eta} \\ = & 1.015A \end{split}$$

Adjust switching period t_S and ON time t_1 to t'_S and t'_1 .

$$\begin{split} t_{S}' &= \frac{\eta \times L_{M} \times I_{P_PK_MAX}^{2}}{2P_{OUT}} \\ &= \frac{0.92 \times 1800 \mu H \times 1.015 A^{2}}{2 \times 42W} \\ &= 20.31 \mu s \end{split}$$

$$t_{1}' = \frac{L_{M} \times I_{P_PK_MAX}}{V_{DC_MIN}}$$

$$= \frac{1800\mu H \times 1.015A}{380V}$$

$$= 4.806\mu s$$

Compute primary maximum RMS current IP RMS MAX

$$I_{P_RMS_MAX} \approx \sqrt{\frac{t_1'}{3t_S'}} \times I_{P_PK_MAX} = \sqrt{\frac{4.806 \mu s}{6 \times 20.31 \mu s}} \times 1.015 A = 0.285 A$$

(g) Compute secondary maximum peak current and the maximum RMS current.

$$I_{S PK MAX} = N_{PS} \times I_{P PK MAX} = 3.0 \times 1.015 A = 3.045 A$$

$$t_2 = t_S - t_1 - t_3 = 20.31 \mu s - 4.806 \mu s - 1.333 \mu s = 14.171 \mu s$$

$$I_{_{S,RMS,MAX}} \approx \sqrt{\frac{t_{_{2}}^{\prime}}{3t_{_{S}}^{\prime}}} \times I_{_{S_PK_MAX}} \! = \! \sqrt{\frac{14.171\mu s}{3\!\times\!20.31\mu s}} \times 3.045 A \! = \! 1.468 A$$

#3. Select power MOSFET and secondary power diode

Refer to Power Device Design

Known conditions at this step				
V_{DC_MAX}	450V	N _{PS}	3.0	
V _{OUT}	42V	$V_{D_{-}F}$	1V	
ΔV _S	50V	η	92%	

(a) Compute the voltage and the current stress of MOSFET:

$$\begin{aligned} V_{\text{MOS_DS_MAX}} &= V_{\text{DC_MAX}} + N_{\text{PS}} \times (V_{\text{OUT}} + V_{\text{D_F}}) + \Delta V_{\text{S}} \\ &= 450V + 3.0 \times (42V + 1V) + 50V \\ &= 629V \end{aligned}$$

$$I_{\text{MOS_PK_MAX}}\!=\!\!I_{\text{P_PK_MAX}}\!=\!\!1.015A$$

$$I_{MOS\ RMS\ MAX} = I_{P\ RMS\ MAX} = 0.285A$$

(b) Compute the voltage and the current stress of secondary power diode

$$V_{D_R_MAX} = \frac{V_{DC_MAX}}{N_{PS}} + V_{OUT}$$
$$= \frac{450V}{3.0} + 42V$$
$$= 192V$$

$$I_{D PK MAX} = N_{PS} \times I_{P PK MAX} = 3.0 \times 1.015 A = 3.045 A$$

$$I_{D \text{ AVG}} = I_{OUT} = 1A$$

#4. Set VIN pin

Refer to Start up

Conditions			
$V_{ m DC_MIN}$	380V	$V_{ m DC_MAX}$	450V
I_{ST}	34μA (typical)	V _{IN ON}	22V (typical)
		t_{ST}	500ms (designed by user)

(a) R_{ST} is preset

$$R_{ST} < \frac{V_{DC_MIN}}{I_{ST}} = \frac{380V}{34\mu A} = 11.17M\Omega,$$

$$R_{ST} > \frac{V_{DC_MAX}}{1mA} = \frac{450V}{1mA} = 450k\Omega,$$

Set R_{ST}

$$R_{st}$$
=510k Ω ×2=1020k Ω

(b) Design C_{VIN}

$$\begin{split} C_{\text{VIN}} &= \frac{(\frac{V_{DC_MIN}}{R_{ST}} - I_{ST}) \times t_{ST}}{V_{\text{VIN_ON}}} \\ &= \frac{(\frac{380}{1020k\Omega} - 34\mu\text{A}) \times 500\text{ms}}{22\text{V}} \\ &= 7.694\mu\text{F} \end{split}$$

Set C_{VIN}

$$C_{VIN}$$
=4.7 μ F

#5. Set COMP pin

Refer to **Internal pre-charge design for quick start up**

Parameters designed		
R_{COMP}	1.5kΩ	
C _{COMP1}	10nF	

#6. Set current sense resistor to achieve ideal output current

Refer to **Primary-side constant-current control**

Known conditions at this step				
k 0.167 N _{PS} 30				
V_{REF}	0.6	I_{OUT}	1A	

The current sense resistor is

$$\begin{split} R_{\scriptscriptstyle S} &= \frac{k \times V_{\scriptscriptstyle REF} \times N_{\scriptscriptstyle PS}}{I_{\scriptscriptstyle OUT}} \\ &= \frac{0.167 \times 0.6V \times 3.0}{1A} \\ &= &0.3\Omega \end{split}$$

#7. Set ZCS pin

Refer to Over Voltage Protection (OVP) & Open Loop Protection (OLP)

Parameters Designed		
R _{ZCSU}	200kΩ	

Then compute R_{ZCSD}

$$\begin{aligned} V_{IN_CV} &= \frac{0.5 \cdot (R_{ZCSU} + R_{ZCSD})}{R_{ZCSD}} \ge 11 \\ \frac{0.5}{10.5} &\ge \frac{R_{ZCSD}}{R_{ZCSU}} \end{aligned}$$

R_{ZCSUP}=200k ohm

$$R_{ZCSD} \le 9.5$$

R_{ZCSD} is set to

 $R_{ZCSD} = 8.2k\Omega$

#8. Set ADIM pin

$$C_{\text{ADIM}} \!\!=\! \frac{1.0 \! \times \! 10^{\text{-3}}}{f_{\text{PWM}}} F \! \times \! Hz \! \! = \! \frac{1.0 \! \times \! 10^{\text{-3}}}{f_{\text{PWM}}} F \! \times \! Hz \! \! \! = \! \! 1uF$$

Hence C_{ADIM} is set to

Cadim=1uF

#9. Final result

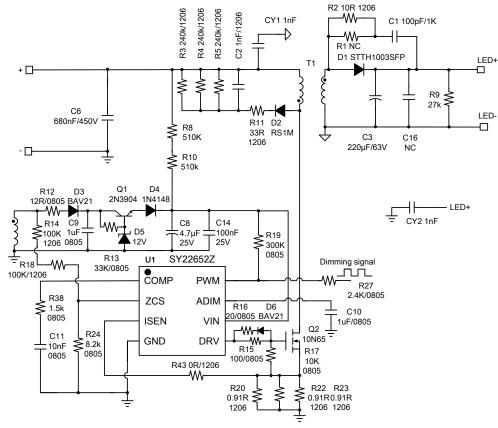
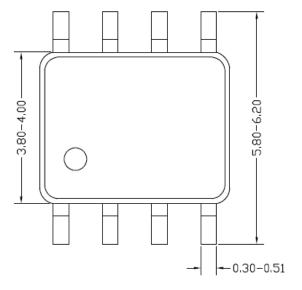
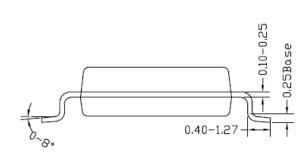
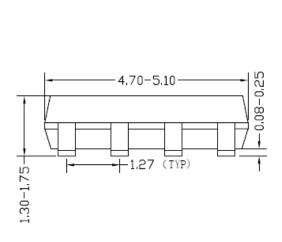
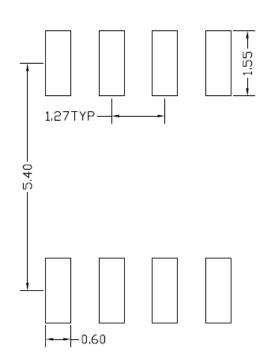




Fig.18 Final Design Result


SO8 Package outline & PCB layout design



Top view

Side view

Front view

Recommended Pad Layout (Reference only)

Notes: All dimension in millimeter and exclude mold flash & metal burr.

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
May 7,2020	Revision 0.9	Initial Release

IMPORTANT NOTICE

- Right to make changes. Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safetycritical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. Suitability for use. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- Terms and conditions of commercial sale. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2020 Silergy Corp.

All Rights Reserved.