

SY22656 Single Stage Buck PFC Controller For LED Dimming Lighting

General Description

The SY22656 is a single stage Buck PFC controller targeting at LED lighting applications with PWM or analog dimming. It is a Buck converter integrated a 600V MOSFET. It operates in the quasi-resonant mode to achieve higher efficiency and keeps in constant on time operation to achieve high power factor. It adopts special design to achieve quick start up and reliable protection for safety requirement.

Ordering Information

SY22656□(□□)□

Ordering Number	Package type	Note
SY22656FAC	SO8	

Features

- Integrated 600V MOSFET
- High Dimming Accuracy
- Dimming Range from 5.0% to 100.0%
- CV Mode for Bias Supply at <2.5% Dimming Signal
- Valley Turn-on of the MOSFET to Achieve Low Switching Losses
- Quick Start up <500ms
- Internal High Current MOSFET Driver: 200mA Sourcing and 650mA Sinking
- Low Start up Current: 34µA typical
- Reliable Short LED and Open LED Protection
- Power Factor >0.90
- RoHS Compliant and Halogen Free
- Compact Package: SO8

Applications

• LED Lighting

Recommended operating output power@Vout=50V			
Products 90~132Vac 176~264Vac			
SY22656	8.5W	12W	

Typical Applications

Figure.1a Analog dimming with PWM signal input

Silergy Corp. Confidential- Prepared for Customer Use Only 1 All Rights Reserved.

Figure.1b Analog dimming with 0~1.5 analog signal

Pinout (top view)

Top Mark: BKY*xyz* (device code: BKY, *x=year code, y=week code, z= lot number code*)

Pin Name	Pin number	Pin Description
LX	1	Drain of internal MOSFET.
GND	2	Ground pin
VIN	3	Power supply pin. This pin also provides output over voltage protection along with ZCS pin.
ADIM	4	PWM filter output pin. Bypass this pin to GND with enough capacitance to hold on internal voltage reference.
COMP	5	Loop compensation pin. Connect a RC network across this pin and ground to stabilize the control loop.
ZCS	6	Inductor current zero-crossing detection pin. This pin receives the auxiliary winding voltage by a resister divider and detects the inductor current zero crossing point. This pin also provides over voltage protection and line regulation modification function simultaneously. If the voltage on this pin is above V_{ZCS_OVP} , the IC would enter over voltage protection mode. Good line regulation can be achieved by adjusting the upper resistor of the divider.
PWM	7	PWM dimming input pin. this pin detects the PWM dimming signal
ISEN	8	Current sense pin. Connect this pin to the source of the switch. Connect the sense resistor across the source of the switch and the GND pin. (current sense resister R _S : $R_s = \frac{V_{REF}}{2 \times I_{OUT}}$)

Block Diagram

Figure.3 Block Diagram

Absolute Maximum Ratings (Note 1)

LX	600V
LA	000 v
VIN	
Supply current I _{VIN}	7mA
ZCS, PWM	
ADIM	
ISEN, COMP	
Power Dissipation, @ T _A = 25°C SO8	1.1W
Package Thermal Resistance (Note 2)	
SO8, θ JA	88°C/W
SO8, θ JC	45°C/W
Temperature Range	40°C to 150°C
Lead Temperature (Soldering, 10 sec.)	260°C
Storage Temperature Range	65°C to 150°C

Recommended Operating Conditions (Note 3)

	0		
VIN		8V~2(ΩV
V II V			J V

Electrical Characteristics

 $(V_{IN} = 12V \text{ (Note 3)}, T_A = 25^{\circ}C \text{ unless otherwise specified)}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply Section						
VIN Turn-on Threshold	V _{VIN_ON}		19	20	22	v
VIN Turn-off Threshold	V _{VIN_OFF}		6.7	7.3	8.0	V
VIN OVP Voltage	V _{VIN_OVP}			$V_{IN_{ON}}$ +4.0		v
Start up Current	Ist	Vvin <vvin_off< td=""><td>24</td><td>34</td><td>46</td><td>μΑ</td></vvin_off<>	24	34	46	μΑ
Shunt Current in OVP Mode	IVIN_OVP	VVIN>VVIN_OVP	5	7	9	mA
Error Amplifier Section						
Internal Reference Voltage	V _{REF}		294	300	306	mV
Current Sense Section						
Current Limit Reference Voltage	VISEN_MAX		650	750	850	mV
ZCS Pin Section						
ZCS Pin OVP Voltage Threshold	VZCS_OVP		1.43	1.5	1.57	v
Integrated MOSFET Section						
Breakdown Voltage	V_{BV}	V _{GS} =0,I _{DS} =250uA	600			V
Time Control Section						
Max ON Time	Ton_max	V _{COMP} =2.6V		25		μs
Min ON Time	Ton_min			350		ns
Max OFF Time	T _{OFF_MAX}			120		μs
Min OFF Time	Toff_min			0.5		μs
Maximum Switching Frequency	f _{MAX}			125		kHz
ADIM Function Section						
ADIM Enable ON	VADIM_ON		63	75	87	mV
ADIM Enable OFF	VADIM_OFF		25	40	50	mV
Thermal Section						
Thermal Fold Back Temperature	T_{FB}			145		°C
Thermal Shut Down Temperature	T _{SD}			160		°C
PWM Function Section						
PWM ON Voltage	VPWM_ON				1.2	V
PWM OFF Voltage	VPWM_OFF		0.5			V

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane. **Note 3**: Increase VIN pin voltage gradually higher than V_{VIN_ON} voltage then turn down to 12V.

Operation

The SY22656 is a single stage Buck and PFC controller targeting at LED lighting applications with multiple dimming function.

High power factor is achieved by constant on operation mode, with which the control scheme and the circuit structure are both simple.

SY22656 is compatible with analog dimming and PWM dimming for different application.

In order to reduce the switching losses and improve EMI performance, Quasi-Resonant switching mode is applied, which means to turn on the power MOSFET at voltage valley; the start up current of SY22656 is rather small (34 μ A typically) to reduce the standby power loss further; the maximum switching frequency is clamped to 120kHz to reduce switching losses and improve EMI performance when the converter is operated at light load condition.

SY22656 provides reliable protections such as Short Circuit Protection (SCP), Open LED Protection (OLP), Over Temperature Protection (OTP), etc.

SY22656 is available with SO8 package.

Applications Information

<u>Start up</u>

After AC supply or DC BUS is powered on, the capacitor C_{VIN} across VIN and GND pin is charged up by BUS voltage through a start up resistor R_{ST} . Once V_{VIN} rises up to V_{VIN_ON} , the internal blocks start to work. V_{VIN} will be pulled down by internal consumption of IC until the auxiliary winding of Buck transformer could supply enough energy to maintain V_{VIN} above V_{VIN_OFF} .

The whole start up procedure is divided into two sections shown in Fig.4. t_{STC} is the C_{VIN} charged up section, and t_{STO} is the output voltage built-up section. The start up time t_{ST} composes of t_{STC} and t_{STO} , and usually t_{STO} is much smaller than t_{STC} .

SY22656

Fig.4 Start up

The start up resistor R_{ST} and $C_{\text{VIN}} \, \text{are designed by rules}$ below:

(a) Preset start-up resistor R_{ST} , make sure that the current through R_{ST} is larger than I_{ST} and smaller than I_{VIN_OVP}

$$\frac{V_{\text{BUS}}}{I_{\text{VIN}_{\text{OVP}}}} < R_{\text{ST}} < \frac{V_{\text{BUS}}}{I_{\text{ST}}} (1)$$

Where V_{BUS} is the BUS line voltage.

(b) Select C_{VIN} to obtain an ideal start up time t_{ST} , and ensure the output voltage is built up at one time.

$$C_{VIN} = \frac{\left(\frac{V_{BUS}}{R_{ST}} - I_{ST}\right) \times t_{ST}}{V_{VIN_{ON}}} (2)$$

(d) If the C_{VIN} is not big enough to build up the output voltage at one time. Increase C_{VIN} and decrease R_{ST} , go back to step (a) and re-do such design flow until the ideal start up procedure is obtained.

Internal pre-charge design for quick start up

After V_{VIN} exceeds V_{VIN_ON} , V_{ADIM} and V_{COMP} is precharged by internal current sources in turn. V_{ADIM} is precharged first, and when V_{ADIM} is over the initial voltage V_{ADIM_IC} , V_{COMP} begins to be pre-charged. The PWM block won't start to output PWM signals until V_{COMP} is over the initial voltage V_{COMP_IC} . V_{COMP_IC} can be programmed by R_{COMP} . Such design is meant to reduce the start up time shown in Fig.5.

The voltage pre-charged $V_{\text{COMP_IC}}$ in start-up procedure can be programmed by R_{COMP}

 $V_{\text{COMP IC}} = 900 \text{mV} - 300 \mu \text{A} \times \text{R}_{\text{COMP}}$ (3)

The voltage pre-charged $V_{ADIM_{LC}}$ in start-up procedure is fixed internally.

V_{ADIM IC}=37mV

Fig.5 Pre-charge scheme in start up

Where V_{COMP IC} is the pre-charged voltage of COMP pin.

Generally, a big capacitance of C_{COMP} is necessary to achieve high power factor and stabilize the system loop $(1\mu F \sim 2\mu F recommended).$

The voltage pre-charged in start-up procedure can be programmed by R_{COMP} ; On the other hand, larger R_{COMP} can provide larger phase margin for the control loop; A small ceramic capacitor is added to suppress high frequency interruption (10pF~100pF is recommended if necessary)

Shut down

After AC supply or DC BUS is powered off, the energy stored in the BUS capacitor will be discharged. When the auxiliary winding of Buck transformer can not supply enough energy to VIN pin, VVIN will drop down. Once V_{VIN} is below V_{VIN_OFF}, the IC will stop working and V_{COMP} will be discharged to zero.

Constant-current control

The switching waveforms are shown in wave below. The output current IOUT can be represented by,

$$I_{OUT} = \frac{I_{PK}}{2} \times \frac{t_{EFF}}{t_s} \quad (4)$$

Where I_{PK} is the peak current of the inductor; t_{EFF} is the effective time of inductor current rising and falling; ts is the switching period.

 I_{PK} and t_{EFF} can be detected by Source and ZCS pin, which is shown in Fig.7. These signals are processed and applied to the negative input of the gain modulator. In static state, the positive and negative inputs are equal.

 $V_{\text{REF}} = I_{\text{PK}} \times R_{\text{S}} \times \frac{t_{\text{EFF}}}{t_{\text{S}}} (5)$ ts **V**_{Drain}

Fig.6 switching waveforms

Fig.7 Output current detection diagram

Finally, the output current I_{OUT} can be represented by

$$I_{OUT} = \frac{V_{REF}}{R_s \times 2} (6)$$

Where V_{REF} is the internal reference voltage; R_S is the current sense resistor.

V_{REF} is internal constant parameters I_{OUT} can be programmed by Rs.

$$R_{s} = \frac{V_{REF}}{I_{OUT} \times 2} (7)$$

Quasi-Resonant Operation

QR mode operation provides low turn-on switching losses for the converter.

7

Fig.8 QR mode operation

The voltage across drain and source of the MOSFET is reflected by the auxiliary winding of the Buck transformer. ZCS pin detects the voltage across the auxiliary winding by a resistor divider. When the voltage across drain and source of the MOSFET is at voltage valley, the MOSFET would be turned on.

CV Mode

When PWM<2.5%, IC and MCU still need bias power, so,

(1) If Dimming signal is greater than 5.0%, IC always works at CC mode.

(2) If Dimming signal is lower than 2.5%, CV mode is triggered. IC works in CV mode to maintain VFB nearby V_{ZCS_CV} . Np:Na and R_{ZCS} could be adjusted to prevent LED flicker and bias supply enough.

Figure.9 The working process of CV mode

In CV mode,

If V_{FB} is smaller than V_{ZCS_CV} , MOSFET turned off when ISEN voltage reach $V_{CV_ISEN_MAX}$ in every switching cycle, and turned on by QR.

If V_{FB} is greater than V_{ZCS_CV} , IC will sleep for 1.5ms, until V_{FB} is smaller than V_{ZCS_CV} .

The output of CV is decided by OVP.

Over Voltage Protection (OVP) & Open LED Protection (OLP)

The output voltage is reflected by the auxiliary winding voltage of the Buck transformer, and both ZCS pin and VIN pin provide over voltage protection function. When the load is null or large transient happens, the output voltage will exceed the rated value. When V_{VIN} exceeds V_{VIN_OVP} or V_{ZCS} exceeds V_{ZCS_OVP} , the over voltage protection is triggered and the IC will discharge V_{VIN} by an internal current source I_{VIN_OVP} . Once V_{VIN} is below V_{VIN_OFF} , the IC will shut down and be charged again by BUS voltage through start up resistor. If the over voltage condition still exists, the system will operate in hiccup mode.

Thus, the turns of the auxiliary winding $N_{\rm AUX}$ and the resistor divider is related with the OVP function.

$$\frac{V_{\text{ZCS}_\text{OVP}}}{V_{\text{OVP}}} = \frac{N_{\text{AUX}}}{N_{\text{S}}} \times \frac{R_{\text{ZCSD}}}{R_{\text{ZCSU}} + R_{\text{ZCSD}}} (8)$$
$$\frac{V_{\text{VIN}_\text{OVP}}}{V_{\text{OVP}}} \ge \frac{N_{\text{AUX}}}{N_{\text{S}}} (9)$$

Where V_{OVP} is the output over voltage specification; R_{ZCSU} and R_{ZCSD} compose the resistor divider. The turns ratio of N_S to N_{AUX} and the ratio of R_{ZCSU} to R_{ZCSD} could be induced from equation (8) and (9).

Short Circuit Protection (SCP)

When the output is shorted to ground, the output voltage is clamped to zero. The voltage of the auxiliary winding is proportional to the output winding, so $V_{\rm VIN}$ will drop down without auxiliary winding supply. Once $V_{\rm VIN}$ is

below V_{VIN_OFF} , the IC will shut down and be charged again by the BUS voltage through the start up resistor. If the short circuit condition still exists, the system will operate in hiccup mode.

In order to guarantee SCP function not effected by voltage spike of auxiliary winding, a filter resistor R_{AUX} is needed (5 Ω typically) shown in Fig.10.

Line regulation modification

The IC provides line regulation modification function to improve line regulation performance.

Due to the sample delay of ISEN pin and other internal delay, the output current increases with increasing input BUS line voltage. A small compensation voltage ΔV_{ISEN_C} is added to ISEN pin during ON time to improve such performance. This ΔV_{ISEN_C} is adjusted by the upper resistor of the divider connected to ZCS pin.

$$\Delta V_{\text{ISEN}_{C}} = V_{\text{BUS}} \times \frac{N_{\text{AUX}}}{N_{\text{P}}} \times \frac{1}{R_{\text{ZCSU}}} \times k_{2} (10)$$

Where R_{ZCSU} is the upper resistor of the divider; k_2 is an internal constant as the modification coefficient.

The compensation is mainly related with $R_{ZCSU},$ larger compensation is achieved with smaller R_{ZCSU} . Normally, R_{ZCS} ranges from $100k\Omega{\sim}1M\Omega.$

Then R_{ZCSD} can be selected by,

$$\frac{\frac{V_{ZCS_{OVP}}}{V_{OUT}} \times \frac{N_{S}}{N_{AUX}}}{1 - \frac{V_{ZCS_{OVP}}}{V_{OUT}} \times \frac{N_{S}}{N_{AUX}}} \times R_{ZCSU} > R_{ZCSD} (11),$$

And,

$$R_{z_{CSD}} \ge \frac{\frac{V_{z_{CS_{OVP}}}}{V_{ovP}} \times \frac{N_s}{N_{AUX}}}{1 - \frac{V_{z_{CS_{OVP}}}}{V_{ovP}} \times \frac{N_s}{N_{AUX}}} \times R_{z_{CSU}} (12)$$

Where V_{OVP} is the output over voltage protection specification; V_{OUT} is the rated output voltage; R_{ZCSU} is the upper resistor of the divider; N_S and N_{AUX} are the turns of secondary winding and auxiliary winding separately.

Dimming Mode

SY22656 supports PWM input and 0~1.5V input.

1). 0~1.5V input dimming

Fig.10 0~1.5V input dimming

If V_{ADIM} is lower than $V_{ADIM,OFF}$ (37.5mV), the output current is decreased to zero; While V_{ADIM} is increased from $V_{ADIM,OFF}$ to $V_{ADIM,ON}$ (75mV), the output current is created and the value is 5.0 percent of full load output current; When V_{ADIM} is higher than 1.35V, the output current is 100 percent of full load output current;

As showed above, the available dimming range of V_{ADIM} is from 75mV to 1350mV.

2) .PWM input dimming

If the dimming signal is PWM signal, as showed above, there is a RC filter to convert the signal.

When the voltage of PWM pin is higher than $V_{\text{PWM,ON}}$, the dimming signal is sensed as high logic level, and

ADIM pin is pulled up to 1.5V by a $10k\Omega$ resistor; when the voltage of PWM pin is lower than V_{PWM,OFF}, the dimming signal is sensed as low logic level, and ADIM pin is pulled down to GND by a $10k\Omega$ resistor.

The duty cycle of PWM signal is reflected by the voltage on ADIM pin $V_{\text{ADIM}}.$

$$V_{ADIM} = D_{PWM} \times 1.5 V$$

So the relationship between the output current and the PWM input is showed below:

A capacitor C_{ADIM} need be connected across ADIM and GND pin to obtain a smooth voltage waveform of the dimming signal duty cycle. C_{ADIM} is selected by (for 1kHz PWM, 1uF typically)

$$C_{ADIM} \ge \frac{10^{-3}}{f_{DIM}} F \cdot Hz$$
(16)

f_{DIM} is the frequency of PWM dimming signal.

3) deep dimming level

To achieve deeper dimming, there can be parallel a resistor (R_{ADJ}) to COMP pin, as showed above.

The recommended deepest dimming level is 4%;

Power Device Design

MOSFET and Diode

When the operation condition is with maximum input voltage and full load, the voltage stress of MOSFET and output power diode is maximized;

$$V_{\text{MOS}_DS_MAX} = \sqrt{2} V_{\text{AC}_MAX} (17)$$
$$V_{\text{D}_R_MAX} = \sqrt{2} V_{\text{AC}_MAX} (18)$$

Where V_{AC_MAX} is maximum input AC RMS voltage.

When the operation condition is with minimum input voltage and full load, the current stress of MOSFET and power diode is maximized.

Inductor (L)

Fig.13 Input waveforms

The power is transferred from AC input to output only when the input voltage is larger than output voltage in Buck converter. The input voltage and inductor current waveforms are shown in Fig.13, where θ_1 and θ_2 are the time that input voltage is equal to output voltage.

In Quasi-Resonant mode, each switching period cycle t_s consists of three parts: current rising time t_1 , current falling time t_2 and quasi-resonant time t_3 shown in Fig.15.

The system operates in the constant on time mode to achieve high power factor. The ON time increases with the input AC RMS voltage decreasing and the load increasing. When the operation condition is with minimum input AC RMS voltage and full load, the ON time is maximized. On the other hand, when the input voltage is at the peak value, the OFF time is maximized. Thus, the minimum switching frequency $f_{S_{\rm MIN}}$ happens at the peak value of input voltage with minimum input AC

RMS voltage and maximum load condition; Meanwhile, the maximum peak current through MOSFET and the transformer happens.

Fig.14 Switching waveforms

Once the minimum frequency $f_{S_{MIN}}$ is set, the inductance of the transformer could be calculated. The design flow is shown as below:

(a) Preset minimum frequency f_{S_MIN}

(b) Compute relative t_S , t_1

$$t_{s} = \frac{1}{f_{s_{MIN}}} (19)$$

$$t_{1} = \frac{t_{s} \times (V_{OUT} + V_{DF})}{(\sqrt{2}V_{AC_{MIN}} + V_{DF})} (20)$$

 $t_2 = t_s - t_1 (21)$

Where V_{DF} is the forward voltage of the diode (c) Design inductance L

$$\theta_{1} = \arcsin\left(\frac{V_{OUT}}{\sqrt{2}V_{AC_{MIN}}}\right) \times \frac{1}{\pi} \times \frac{1}{2 \times f_{AC}} \quad (22)$$

$$\theta_{2} = \frac{1}{2 \times f_{AC}} - \theta_{1} \quad (23)$$

$$L = \frac{\eta \times f_{AC} \times V_{OUT} \times t_{1}}{P_{OUT}} \times \frac{\cos(2\pi f_{AC} \times \theta_{1}) - \cos(2\pi f_{AC} \times \theta_{2})}{2\pi f_{AC}} - V_{OUT}(\theta_{2} - \theta_{1})] \quad (24)$$

Where η is the efficiency; P_{OUT} is rated full load power;

(d) Compute inductor maximum peak current $I_{L_{PK_{MAX}}}$.

$$I_{L_PK_MAX} = \frac{(\sqrt{2}V_{AC_MIN} - V_{OUT}) \times t_1}{L} (25)$$

Where $I_{L_{PK}MAX}$ is the maximum inductor peak current;

(f) Compute the RMS current of Buck inductor

 $I_{\rm L\ RMS\ MAX}$ is inductor RMS current of whole AC period

$$I_{L_{RMS}MAX} = \frac{t_{1}}{\sqrt{3} \times L} \sqrt{V_{AC_{MIN}}^{2} + V_{OUT}^{2} - \frac{4\sqrt{2}V_{AC_{MIN}} \times V_{OUT}}{\pi}}$$
(26)

(g) Compute RMS current of the MOSFET

$$I_{L_{RMS}MAX} = \sqrt{\frac{t_{1}}{3t_{s}}} \times \frac{t_{1}}{L} \sqrt{V_{AC_{MIN}}^{2} + V_{OUT}^{2} - \frac{4\sqrt{2}V_{AC_{MIN}} \times V_{OUT}}{\pi}}$$
(27)

Inductor design (N, NAUX)

These parameters below are necessary:

Necessary parameters		
Inductance	L	
inductor maximum current	I _{L_PK_MAX}	
inductor maximum RMS current	I _{L_RMS_MAX}	

The design rules are as followed:

(a) Select the magnetic core style, identify the effective area $A_{\text{e.}}$

(b) Preset the maximum magnetic flux ΔB

 $\Delta B=0.22\sim0.26T$

(c) Compute the turns N

$$N = \frac{L_{M} \times I_{L_{PK}MAX}}{\Delta B \times A_{e}} (28)$$

(d)Compute the auxiliary turns NAUX

$$N_{AUX} = N \times \frac{V_{VIN}}{V_{OUT}}$$
 (29)

Where V_{VIN} is the working voltage of VIN pin (10V~11V is recommended).

(e) Select an appropriate wire diameter

With $I_{L_RMS_MAX}$, select appropriate wire to make sure the current density ranges from $4A/mm^2$ to $10A/mm^2$

(f) If the winding area of the core and bobbin is not enough, reselect the core style, go to (a) and redesign the transformer until the ideal transformer is achieved.

Output capacitor Cout

Preset the output current ripple ΔI_{OUT} , C_{OUT} is induced by

$$C_{OUT} = \frac{\sqrt{(\frac{2I_{OUT}}{\Delta I_{OUT}})^2 - 1}}{4\pi f_{AC} R_{LED}} (30)$$

Where I_{OUT} is the rated output current; ΔI_{OUT} is the demanded current ripple; f_{AC} is the input AC supply frequency; R_{LED} is the equivalent series resistor of the LED load.

Layout

(a) To achieve better EMI performance and reduce line frequency ripples, the output of the bridge rectifier should be connected to the BUS line capacitor first, then to the switching circuit.

(b) The circuit loop of all switching circuit should be kept small.

(c) The connection of ground is recommended as:

$$3 \leftrightarrow 2 \leftrightarrow 5 \leftrightarrow 1$$

Ground ①: ground of BUS line capacitor Ground ②: ground of bias supply capacitor and GND pin

Ground ③: ground node of auxiliary winding

Ground ④: ground of signal trace except GND pin

Ground (5): ground node of current sample resistor.

(d) Bias supply trace should be connected to the bias supply capacitor first instead of GND pin. The bias supply capacitor should be put beside the IC.

(e) Loop of 'Source pin – current sample resistor – GND pin' should be kept as small as possible.

(f) The resistor divider connected to ZCS pin is recommended to be put beside the IC.

(g) The control circuit is recommended to be put outside the power circuit loop.

Fig.16 Ground connection recommended

Design Example

A design example of typical application is shown below step by step. #1. Identify design specification

Design Specification			
V _{AC} (RMS)	90V~264V	V _{OUT}	70V
L _{OUT}	120mA	η	90%

#2.Inductor design (L)

Refer to Power Device Design

Conditions			
V _{AC_MIN}	90V	V _{AC_MAX}	264V
P _{OUT}	8.4W	f _{-S-MIN}	50kHz

(a) f_{-S,MIN-} is preset

 $f_{S_MIN}\!=\!\!50kHz$

(b) Compute the switching period t_{s} and ON time t_{1} at the peak of input voltage.

$$t_{s} = \frac{1}{f_{s_MIN}} = 20\mu s$$

$$t_{1} = \frac{t_{s} \times (V_{OUT} + V_{DF})}{(\sqrt{2}V_{AC_MIN} + V_{DF})} = \frac{20us \times (70V + 1V)}{(\sqrt{2} \times 90V + 1V)} = 11.07\mu s$$

$$t_{2} = t_{s} - t_{1} = 20.00\mu s - 11.07\mu s = 8.93\mu s$$

(c) Compute the inductance L

$$\begin{aligned} \theta_{1} &= \arcsin(\frac{V_{OUT}}{\sqrt{2}V_{AC_{MIN}}}) \times \frac{1}{\pi} \times \frac{1}{2 \times f_{AC}} = \arcsin(\frac{70V}{\sqrt{2} \times 90V}) \times \frac{1}{\pi} \times \frac{1}{2 \times 50Hz} = 1.854 \times 10^{-3} s \\ \theta_{2} &= \frac{1}{2 \times f_{AC}} - \theta_{1} = \frac{1}{2 \times 50Hz} - 1.854 \times 10^{-3} s = 8.146 \times 10^{-3} s \\ L &= \frac{\eta \times f_{AC} \times V_{OUT} \times t_{1}}{P_{OUT}} \times \\ [\sqrt{2}V_{AC_{MIN}} \times \frac{\cos(2 \times \pi \times f_{AC} \times \theta_{1}) - \cos(2 \times \pi \times f_{AC} \times \theta_{2})}{2 \times \pi \times f_{AC}} - V_{OUT}(\theta_{2} - \theta_{1})] \\ &= \frac{0.90 \times 50Hz \times 70V \times 11.07\mu s}{8.4W} \times \\ [\sqrt{2} \times 90V \times \frac{\cos(2\pi \times 50Hz \times 1.854 \times 10^{-3} s) - \cos(2\pi \times 50Hz \times 8.146 \times 10^{-3} s)}{2\pi \times 50Hz} - 70 \times (8.146 \times 10^{-3} s - 1.854 \times 10^{4} s)] \\ &= 980\mu H \end{aligned}$$

(d) Compute inductor maximum peak current $I_{\mbox{$L$-PK-MAX$}}.$

$$I_{L_{PK_{MAX}}} = \frac{(\sqrt{2}V_{AC_{MIN}} - V_{OUT}) \times t_1}{L} = \frac{(\sqrt{2} \times 90 - 70) \times 11.07 \mu s}{980 uH} = 0.647 A$$

Where $I_{L_PK_MAX}$ is the maximum inductor peak current;

(f) Compute RMS of the inductor current $I_{L_RMS_MAX}$

$$I_{L_RMS_MAX} = \frac{t_1}{\sqrt{3} \times L} \sqrt{V_{AC_MIN}^2 + V_{OUT}^2 - \frac{4\sqrt{2}V_{AC_MIN} \times V_{OUT}}{\pi}}$$
$$= \frac{11.07\mu s}{\sqrt{3} \times 980\mu H} \sqrt{90V^2 + 70V^2 - \frac{4\sqrt{2} \times 90V \times 70V}{\pi}}$$
$$= 0.266A$$

#3. Select power MOSFET and power diode

Refer to Power Device Design

Known conditions at this step				
V _{AC_MAX}	264V	η	90%	
V _{OUT}	90V			

Compute the voltage and the current stress of MOSFET:

$$\begin{split} I_{L_RMS_MAX} &= \sqrt{\frac{t_1}{3t_s}} \times \frac{t_1}{L} \sqrt{V_{AC_MIN}}^2 + V_{OUT}^2 - \frac{4\sqrt{2}V_{AC_MIN} \times V_{OUT}}{\pi}} \\ &= \sqrt{\frac{11.07\mu s}{3 \times 20.0\mu s}} \times \frac{11.07\mu s}{980\mu H} \times \sqrt{90V^2 + 70V^2 - \frac{4\sqrt{2} \times 90V \times 70V}{\pi}} \\ &= 0.197A \end{split}$$

#4. Select the output capacitor C_{OUT}

Refer to Power Device Design

Conditions			
Iout	120mA	ΔI_{OUT}	0.3I _{OUT}
f _{AC}	50Hz	R _{LED}	$23 \times 1.6\Omega$

The output capacitor is

$$C_{OUT} = \frac{\sqrt{\left(\frac{2I_{OUT}}{\Delta I_{OUT}}\right)^2 - 1}}{4\pi f_{AC}R_{LED}}}$$
$$= \frac{\sqrt{\left(\frac{2 \times 0.12A}{0.3 \times 0.12A}\right)^2 - 1}}{4\pi \times 50 \text{Hz} \times 23 \times 1.6\Omega}$$
$$= 285 \mu \text{F}$$

#5. Set VIN pin

Refer to Start up

Conditions			
V _{BUS_MIN}	$90V \times 1.414$	V _{BUS_MAX}	264V×1.414
I _{ST}	34µA (typical)	V _{IN_ON}	20V (typical)
I _{VIN_OVP}	7mA (typical)	t _{-ST}	500ms (designed by user)

(a) R_{-ST} is preset

$$R_{ST} < \frac{V_{BUS}}{I_{ST}} = \frac{176V \times 1.414}{15\mu A} = 16.59 M\Omega ,$$
$$R_{ST} > \frac{V_{BUS}}{I_{VIN, OVP}} = \frac{264V \times 1.414}{2mA} = 186.7 k\Omega$$

Set R_{ST}

 $R_{_{ST}}{=}300k\Omega{\times}2{=}600k\Omega$

(b) Design C.VIN

$$C_{VIN} = \frac{\left(\frac{V_{BUS}}{R_{ST}} - I_{ST}\right) \times t_{ST}}{V_{VIN_ON}}}{\frac{176V \times 1.414}{600k\Omega} - 34\mu A} \times 500 \text{ms}}{22V}$$
$$= 8.6\mu F$$

Set C_{VIN}

 $C_{vin} = 10 \mu F$

#6 Set COMP pin

Refer to Internal pre-charge design for quick start up

Parameters designed				
R _{COMP}	1.5kΩ	V _{COMP_IC}	900mV	
C _{COMP1}	2μF	C _{COMP2}	0	

#7 Set current sense resistor to achieve ideal output current

Refer to constant-current control

Known conditions at this step				
V _{REF}	0.3V	I _{OUT}	0.12A	

The current sense resistor is

$$R_{s} = \frac{V_{REF}}{2 \times I_{OUT}} = \frac{0.3V}{2 \times 0.12A} = 1.25\Omega$$

#8 set ZCS pin

Refer to Line regulation modification and Over Voltage Protection (OVP) & Open Loop Protection (OLP)

First identify R_{ZCSU} need for line regulation.

Known conditions at this step			
Parameters Designed			
R _{ZCSU}	200kΩ	k1	68

Then compute R_{ZCSD}

Conditions				
V _{ZCS_OVP}	1.5V	V _{OVP}	90V	
V _{OUT}	70V			
Parameters designed				
R _{ZCSU}	220kΩ			
Ν	151	N _{AUX}	87	

$$V_{IN_{CV}} = \frac{0.5 \times (R_{ZCSU} + R_{ZCSD})}{R_{ZCSD}} = 11$$

$$R_{ZCSD} = \frac{0.5 \times R_{ZCSU}}{V_{IN_{CV}} - 0.5} = \frac{0.5 \times 200}{11 - 0.5} = 9.5 kohm$$

$$N_{SA} = \frac{V_{OVP}}{V_{IN_{OVP}}} = \frac{90}{23.2} = 3.9$$

$$V_{O_{CV}} = V_{IN_{CV}} \times N_{SA} = 11 \times 3.9V = 42.9V < \frac{2}{3} \times V_{O} = \frac{2}{3} \times 70 = 46.7V$$

R_{ZCSD} is set to

 $R_{ZCSD} = 9.5 k\Omega$

#9 set ADIM and PWM pin

Refer to Analog Dimming Mode Design

Conditions			
V _{PWM_ON}	0.8V		
Parameters Designed			
R _{PWM_UP}	300kΩ		

 $C_{_{ADIM}} \!=\! \frac{10^{^{-3}}}{f_{PWM}} F \!\times\! Hz =\! \frac{10^{^{-3}}}{1000} F \!=\! 1 u F$

Hence CADIM is set to

 $C_{ADIM}{=}1uF$

#10 final result

18

Taping & Reel Specification

1. Taping orientation for packages (SO8)

2. Carrier Tape & Reel specification for packages

Package	Tape width	Pocket	Reel size	Trailer	Leader length	Qty per
type	(mm)	pitch(mm)	(Inch)	length(mm)	(mm)	reel
SO8	12	8	13"	400	400	2500

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2018 Silergy Corp.

All Rights Reserved.