

General Description

The SY2A58118 is an eight half-bridge motor driver solution for automotive, industrial and other mechatronic applications. These half-bridges are fully controllable, facilitating the motor's forward, reverse, coasting, and braking operations. All the functions can be programmed through serial peripheral interface (SPI).

The SY2A58118 provides internal shutdown functions with an nFAULT output pin to alert the system in the event of a fault. It is also equipped with protection features including overcurrent protection, open load detection, undervoltage lockout, overvoltage lockout, and thermal shutdown. The device is available in a TSSOP24E package with an exposed pad for enhanced thermal dissipation.

Features

- Operating Voltage: 4.5V to 32V
- Compatible with a 5V/3.3V Systems
- 8 Half-Bridge Outputs
- Up to 1A Output Current for Each Output
- Low-Power Sleep Mode
- Serial Peripheral Interface, Up to 5MHz
- · Daisy Chain Functionality
- PWM Capable Output for Frequencies of 80Hz, 100Hz, 200Hz and 2kHz with an 8-Bit Duty Cycle Resolution
- Integrated Protection Features:
 - Overcurrent Protection
 - Short-Circuit Protection
 - Open Load Detection
 - Undervoltage Lockout
 - Overvoltage Protection
 - Thermal Shutdown
- nFAULT Pin Output
- TSSOP24E Package
- AEC-Q100 Qualified

Applications

- Automotive
- HVAC
- DC Brushed Motors
- LED

Typical Application

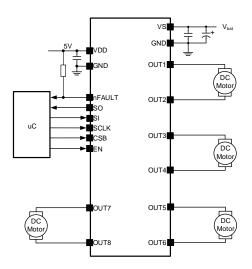
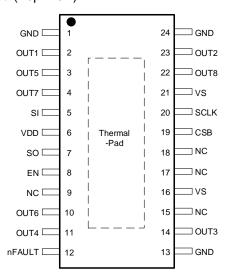


Figure 1. Typical Application Circui

t



Ordering Information

Ordering Part Number	Package Type	Top Mark
SY2A58118HHP	TSSOP24E RoHS Compliant and Halogen Free	GFNxyz

x=year code, y=week code, z= lot number code

Pinout (Top View)

Pin Name	Pin No.	Pin Description			
GND	1,13,24	Ground. Internal connection to lead frame.			
OUT1	2	Half-bridge Output 1			
OUT5	3	Half-bridge Output 5.			
OUT7	4	Half-bridge Output 7.			
SI	5	Serial data input. 16-bit serial communication input.			
VDD	6	Power supply for internal logic.			
SO	7	Serial data output. 16-bit serial communication output.			
EN	8	Drive enable pin. Logic high enables the IC. Internal pull-down.			
NC	9,15,17,18	Not connected.			
OUT6	10	Half-bridge Output 6.			
OUT4	11	Half-bridge Output 4.			
nFAULT	12	Fault indicator output. This pin is pulled logic low during a fault condition and requires an external pull-up resistor.			
OUT3	14	Half-bridge Output 3.			
VS	16,21	Main power supply.			
CSB	19	Chip select Bar. Active low serial port operation. Internal pull-up.			
SCLK	20	Serial Clock input. Clock input for using SPI communication.			
OUT8	22	Half-bridge Output 8.			
OUT2	23	Half-bridge Output 2.			

Function Block

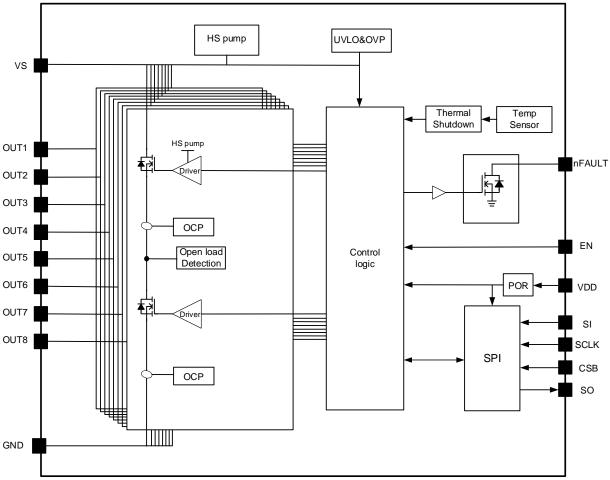


Figure 2. SY2A58118 Function Block Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Min	Max	Unit
VS (DC)	-0.3	40	V
OUTx(DC	-0.3	VS+0.7	V
Digital Pin (SI, SCLK, CS, SO, EN, nFAULT)	-0.3	VDD+0.3	V
VDD	-0.3	5.75	V
Continuous supply current (VS pins) (Note 2)	0	6	Α
Continuous sink current (GND pins) (Note 2)	0	6	Α
Junction Temperature (TJ)	-40	150	°C
Storage Temperature	-65	150	°C

Thermal Information

Parameter(Note 3)	Тур.	Unit
θ _{JA} Junction-to-ambient Thermal Resistance(TSSOP24E)	26	°C \\\\
θ _{JC TOP} Junction-to-case Thermal Resistance(TSSOP24E)	15	°C/W

Recommended Operating Conditions

Parameter	Min	Max	Unit
VS	4.5	32	V
VDD	3.15	5.5	V
Digital Pins	0	5.5	V
nFAULT Pullup Voltage	0	5.5	V
nFAULT Output Current	0	5	mA
Operating Temperature (T _A)	-40	125	°C
Junction Temperature (T _J)	-40	150	°C

Electrical Characteristics

(-40°C <T_A < 125°C, 4.5V< VS <32V, 3.15V<VDD<5.5V, EN=VDD, unless otherwise specified)

(40 0 < 1	A < 125°C, 4.5V< VS <32V, 3.15V <v Parameter</v 	Symbol	Test Conditions	Min	Тур	Max	Unit
			VS =13.5V, EN=L, T _A =25°C		0.35	1	μA
	VS Sleep Mode Current	I _{VS_sleep}	VS =13.5V, EN=L, T _A =125°C		0.00	3.5	μA
			VS=13.5V, EN=H, Driver=OFF,			5.5	μΛ
			T _A =25°C		0.35	0.55	mA
	VS Standby Mode Current	I _{VS_standby}	VS=13.5V, EN=H, Driver=OFF,				
			T _A =125°C			0.55	mA
			VS=13.5V, EN=H, All High-side		0	2.5	A
	VS Operating Mode Current		FETs=ON, T _A =25°C		2	3.5	mA
	V3 Operating Mode Current	I _{VS}	VS=13.5V, EN=H, All High-side			3.5	mA
			FETs=ON, T _A =125°C				
	VC Lindomialtaga Lagicaut Valtaga	V _{UVLO_FALL}	VS falling	3.8		4.3	V
	VS Undervoltage Lockout Voltage	V _{UVLO_RISE}	VS rising	4	200	4.5	mV
	VS Undervoltage Lockout Deglitch Time	V _{UVLO_HYS}			10		μs
	V3 Ondervoltage Lockout Deglitch Time	LUVLO	VS rising, EXT_OVP=0b	21	10	25	V
			VS falling, EXT_OVP=0b	20		24	V
		V _{OVP}	VS rising, EXT_OVP=1b	32.6		35.1	V
Power	VS Overvoltage Protection		VS falling, EXT_OVP=1b	32		34.5	V
Supplies	VS Overvoitage Protection		Rising to falling threshold,		1		V
		V _{OVP_HYS}	EXT_OVP=0b		ı		v
		VOVP_HTS	Rising to falling threshold,		0.7		V
	VC Occasiolate as Destaction Destitute Times	4	EXT_OVP=1b				
	VS Overvoltage Protection Deglitch Time	t _{OVP}	Supply rising	2.75	10	2.05	μs V
	VDD Power On Reset Threshold VDD Power Off Reset Threshold	V _{POR_OFF}	Supply falling	2.75		3.05 2.9	V
	Logic Undervoltage Hysteresis	VPOR_OFF VPOR_HYS	Rising to falling threshold	2.0	150	2.9	mV
	VDD Operating Supply Current	I _{VDD}	VS =13.5V, VDD=3.3V, EN=H, all low-				
			side FETs=ON, SPI=ON, T _A =25°C		3	4	mA
			VS =13.5V, VDD=3.3V, EN=H, all low-			4	Л
			side FETs=ON, SPI=ON, T _A =125°C			4	mA
	VDD Standby Mode Current		VS=13.5V, VDD=3.3V, EN=H,		2	3	mA
		I _{VDD_Standby}	SPI=OFF, T _A =25°C		_		
		122_0tanaby	VS=13.5V, VDD=3.3V, EN=H,			3	mA
			SPI=OFF, T _A =125°C VS=13.5V, VDD=3.3V, EN=L, T _A =25°C		1.1	2	μA
	VDD Sleep Mode Current	I _{VDD SLEEP}	VS=13.5V, VDD=3.3V, EN=L, VS=13.5V, VDD=3.3V, EN=L,		1.1		μΛ
	VDD Gleep Wode Garrent	VDD_SLEEP	T _A =125°C			2	μA
	Input Low Voltage	V _{IL}	14-120 0	0		0.6	.,
Logic Level	Input High Voltage	VIH		2			V
	Input Logic Hysteresis	V _{HYS}		200			mV
	Input Low Current	I _{IL}	VIN=0V	-1		1	μΑ
CSB)	Input High Current	I _{IH}	VIN=VDD		60	100	μΑ
	Input Capacitance	C _{CAPINX}	(Note 4)		-	15	pF
Open-Drain	Output Low Voltage	V _{OL}	I _{sink} =5mA	0		0.4	V
Output	Output High Current	I _{OH}	V _{OD} =5V	-1		1	μA
(nFAULT)	Output Capacitance Output Low Voltage	C _{OD}	(Note 4) I _{out} =-5mA	- 0	-	15 0.4	pF V
	•	V _{OL}		VDD-			
Push-Pull	Output High Voltage	V _{OH}	I _{out} =5mA	0.6		VDD	V
Output (SO)	Output Capacitance	C _{OD}	(Note 4)	5.0		30	pF
Calpat (OO)	Output Low Current	I _{OL}	V _{SO} =0V	-1		1	μA
	Output High Current	I _{OH}	$V_{SO}=V_{VDD}$	-1		1	μA
	High Side MOSFETs on Resistance	R _{DSON}	I _{out} =-300mA		0.75	1.6	Ω
	Low Side MOSFETs on Resistance	INDSON	I _{out} =300mA VS=13.5V		0.75	1.6	3.2
Power MOSFETs	Output Rico and Fall Time (US and LS)	Q1	$VS = 13.5V,10\%-90\% R_{LOAD} = 27\Omega, \\ HBx_SR = 0b$		1		V/µs
	Output Rise and Fall Time (HS and LS)	SL _{rise} and fall	VS =13.5V,10%-90% R _{LOAD} =27Ω, HBx_SR=1b		3.7		V/µs

	_	I				I	1
	Output Dood Time (H to L / L to H)	t _{DEAD}	VS =13.5V, SR=0, HS/LS driver OFF to LS/HS driver ON	6	15	25	μs
	, , ,		VS =13.5V, SR=1, HS/LS driver OFF to LS/HS driver ON	2	5	15	μs
		+	High-side ON or low-side ON command (SPI last transition) to OUTx transition from Hi-Z state, SR=0	3	6	15	μs
	Propagation Delay (HS and LS ON/OFF)	t _{PD}	High-side ON or low-side ON command (SPI last transition) to OUTx transition from Hi-Z state, SR=1	1	3	6	μs
	Source Leakage Current	I _{source LC}	OUTx=0V, EN=H		6	10	μA
1		-30dice_LC	OUTx=0V, EN=L		40.5	1	μΑ
1	Sink Leakage Current		OUTx=13.5V, EN=H, SR=0b OUTx=13.5V, EN=H, SR=1b		13.5 13.5	20 20	μA μA
1	Sink Leakage Current	I _{sink_LC}	OUTX=13.5V, EN=H, SN=1b		13.3	1	μA
			PWM_CHx_FREQ=00b	56	80	104	Hz
	PWM Switching Frequency	f_{PWM}	PWM_CHx_FREQ=01b	70	100	130	Hz
PWM Mode			PWM_CHx_FREQ=10b	140	200	260	Hz
			PWM_CHx_FREQ=11b	1400	2000	2600	Hz
	Thermal Warning Temperature	T _{WARN}	(Note 4)	120	140	170	°C
	Thermal Warning Hysteresis	T _{WARN} HYS	(Note 4)		20		°C
	Thermal Shutdown Temperature	T _{SD}	(Note 4)	150	165	185	°C
	Thermal Shutdown Hysteresis	T _{HYS}	(Note 4)		20		°C
	Over Current Shutdown (Source)	I _{ocso}	VDD=5V, VS=13.5V	-2.3	-1.8	-1.3	Α
	Over Current Shutdown (Sink)	I _{ocsi}	VDD=5V, VS=13.5V	1.3	1.8	2.3	Α
			OCP_DEG=000b	6	10	14	μs
			OCP_DEG=001b(Note 4)	2.6	5	7.9	μs
			OCP_DEG=010b(Note 4)	0.4	2.5	5.9	μs
Protections	Over Current Shutdown Delay Time	t _{oc}	OCP_DEG=011b	0.1	1	3.4	μs
	Over Current Shatdown Delay Time	Loc	OCP_DEG=100b	38.2	60	76.6	μs
			OCP_DEG=101b(Note 4)	23.1	40	51.9	μs
			OCP_DEG=110b(Note 4)	18.5	30	41.5	μs
			OCP_DEG=111b(Note 4)	8.4	20	31.6	μs
	Open Load Detection Current	I _{OLD}	High-side or Low-side	2	9	18	mA
	Open Load Detection Current in Low Current OLD Mode	I _{OLD_LOW}	Low side	0.2	8.0	2	mA
	Open Load Detection Delay Time	t _{OL}	Active OLD (Continuous Mode)	2	3	4	ms
Open Load Detection	Open Load Detection Delay Time	*OL	Active OLD (PWM Mode)	150	200	300	μs

Serial Peripheral Interface

(-40°C <T_A < 125°C, 4.5V< VS <32V, 3.15V<VDD<5.5V, EN=VDD, unless otherwise specified)

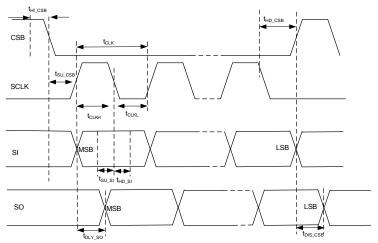
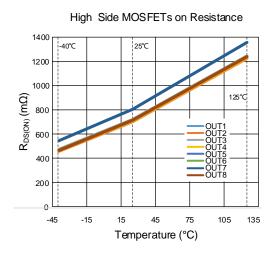
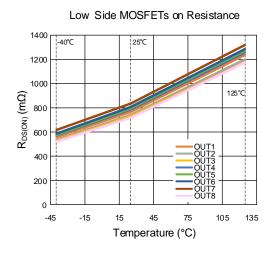
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SCLK Frequency	fclk	(Note 4)			5	MHz
SCLK High Time	tclkh	(Note 4)	100			ns
SCLK Low Time	tclkl	(Note 4)	100			ns
SI Setup Time	t _{SU_SI}	(Note 4)	40			ns
SI Hold Time	t _{HD_SI}	(Note 4)	60			ns
SO Output Data Delay Time	t _{DLY_} so	SCLK high to SO valid(Note 4)			60	ns
CSB Setup Time	tsu_csb	(Note 4)	100			ns
CSB Hold Time	thd_csb	(Note 4)	100			ns
CSB Disable Delay Time	t _{DIS_CSB}	CSB high to SO High-Z (Note 4)		30		ns
CSB Minimum High Time before Active Low	tнı_csв	(Note 4)	600			ns
EN Low Valid Time	tenL	VDD=5V, EN going low 50% to OUTx turning off 50% (Note 4)	10			μs
EN High to SPI Valid	t _{ENH_SPIV}	(Note 4)			100	μs

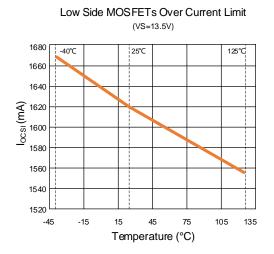
Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied.

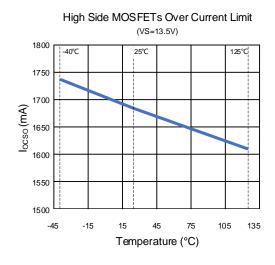
Note 2: Power dissipation and thermal limits must be observed.

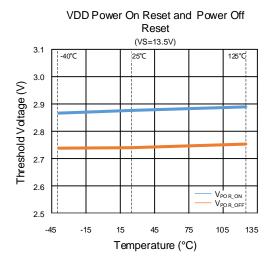
Note 3: θ_{JA} are measured under the natural convention at $T_A = 25$ °C on a highly effective four layer thermal conductivity test board with thermal via.

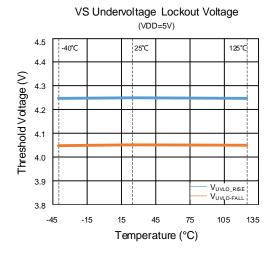
Note 4: Guaranteed by design.

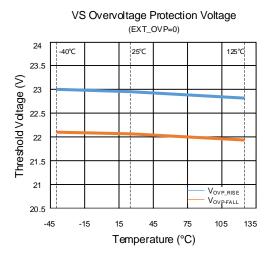




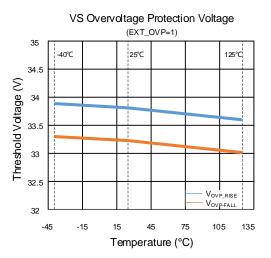

Figure 3. SPI Timing

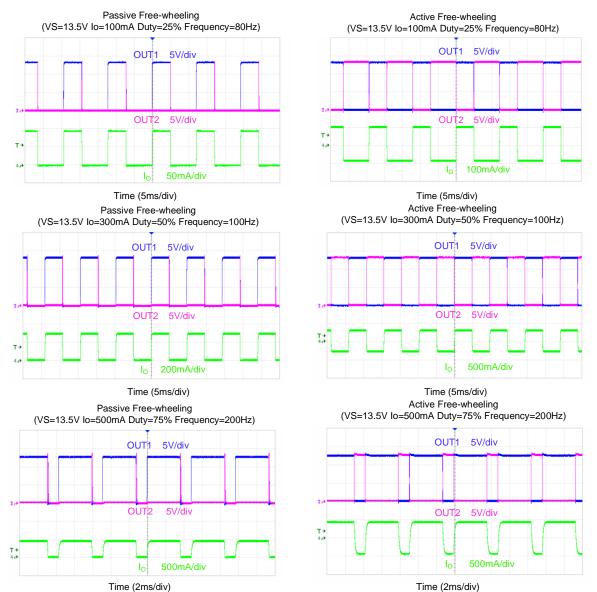



Typical Performance Characteristics









Operation Waveform

Function Description

The SY2A58118 is an eight half-bridge motor driver solution for automotive, industrial, and other mechatronic applications. It can be configured as four independent H-bridges. The half-bridges are designed to support 1A per half-bridge.

The device supports a standard 16-bit, 5MHz serial peripheral interface (SPI). The device also features daisy-chain functionality, enabling the connection of multiple devices using a single CSB line.

Power Supply

VS supplies power to the MOSFETs, while VDD powers the logic circuits. Once VS is powered up, it permits the activation of the drivers. Initially, all drivers are set to an off condition and maintain this state regardless of the VDD status. Powering up VDD results in a reset of all internal logic. All internal registers are cleared upon VDD Power-On Reset (POR).

Driving Control

The device can be configured as an H-bridge, high-side or low-side driver. The half-bridge outputs of the device are designed to drive motor or LED loads. The half-bridge drivers can be programmed for continuous load driving (without PWM) or in chopping mode (with PWM). They also support parallel operation, which is ideal for driving high-current loads.

Continuous Mode (Without PWM)

The half-bridge drivers can be programmed to drive loads continuously (without PWM). The device can set the high-side enable bits (HBx_HS_EN) and low-side enable bits (HBx_LS_EN) in operation control registers (OP_CTRL_1, OP CTRL 2) to switch high-side or low-side individually.

Additionally, the device will stay in Hi-Z mode if both the high-side and low-side switches of a particular half-bridge are set high. This configuration is depicted in Figures 4 and 5, which show OUT1 and OUT2 driving a DC brush motor. In this setup, the motor operates in the forward direction when the high-side FET of OUT1 and the low-side FET of OUT2 are activated, causing the motor current to flow from OUT1 to OUT2. Conversely, activating the high-side FET of OUT2 and the low-side FET of OUT1 will reverse the motor's direction, resulting in the motor current flowing from OUT2 to OUT1.

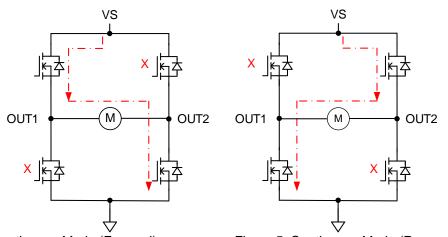


Figure 4. Continuous Mode (Forward)

Figure 5. Continuous Mode (Reverse)

If the motor initially operates in either the forward or reverse direction, and then both the high-side and low-side are switched off, the H-bridge will enter coast mode. Due to the inductive energy, current will continue to flow in the motor, taking a path through the body diodes of the MOSFETs, as illustrated in Figures 6 and 7.

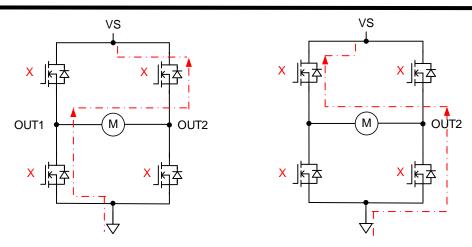


Figure 6. Coast-From Forward

Figure 7. Coast-From Reverse

If the motor initially operates in either the forward or reverse direction, and then either the high-side or low-side is switched on, the H-bridge will operate in brake mode. In the case of low-side braking, both low-side MOSFETs of the driver are turned on. Similarly, for high-side braking, both high-side MOSFETs are turned on. These configurations are illustrated in Figures 8 and 9.

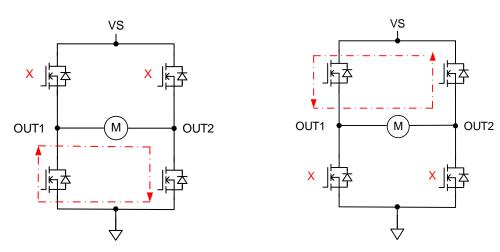


Figure 8. Brake-Low-Side

Figure 9. Brake-High-Side

Each half-bridge of the device can be configured for PWM mode, making it suitable for driving inductive loads such as DC brush motors. The device features eight distinct PWM channels, each with its own duty cycle settings using an 8-bit resolution. It offers four selectable PWM frequencies — 80Hz, 100Hz, 200Hz, and 2kHz — for various application requirements.

The PWM chopping mode operation is carried out through the following steps:

1. PWM Configuration

The half-bridge can be configured into continuous or chopping mode (PWM mode) through the PWM control register (PWM_CTRL_1). The HBx_PWM bit must be set to 1 to enable PWM switching mode. If not set, the half-bridge will operate in continuous mode. Additionally, setting the PWM_CHx_DIS bit in the PWM control register (PWM_CTRL_2) activates the PWM generator.

2. Free-Wheeling Mode (Synchronous Rectification) Disable/Enable

The device allows the selection of the synchronous rectification mode by setting the HBx_FW bit in the free-wheeling control registers (FW_CTRL_1). As illustrated in Figure 10, when the HBx_FW is disabled, the current will flow through

the high-side diode during the PWM off time. Conversely, enabling the HBx_FW bit allows for the opening of the MOSFET to create an alternative current path. Figure 11 provides an example of synchronous rectification, demonstrating how the high-side MOSFET of the OUT2 half-bridge is turned on while the low-side MOSFET of the same half-bridge is turned off during a PWM cycle.

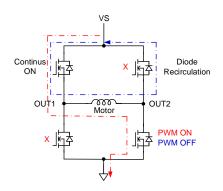


Figure 10. PWM Mode (Synchronous Rectification = OFF)

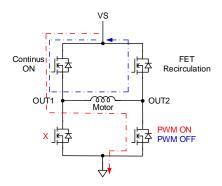


Figure 11. PWM Mode (Synchronous Rectification = ON)

3. PWM Channels Mapping

By configuring the PWM map control registers (PWM_MAP_CTRL_x), any OUTx half-bridge outputs can be mapped to any of the eight available PWM generators. The HBx_PWM_MAP bits are used to map any of these eight channels, as detailed in Table 1.

Table 1. PWM Mapping

HBx_PWM MAP BITS	PWM CHANNEL
HBx_PWM_MAP=000b	Channel 1 selected for OUTx
HBx_PWM_MAP=001b	Channel 2 selected for OUTx
HBx_PWM_MAP=010b	Channel 3 selected for OUTx
HBx_PWM_MAP=011b	Channel 4 selected for OUTx
HBx_PWM_MAP=100b	Channel 5 selected for OUTx
HBx_PWM_MAP=101b	Channel 6 selected for OUTx
HBx_PWM_MAP=110b	Channel 7 selected for OUTx
HBx_PWM_MAP=111b	Channel 8 selected for OUTx

4. PWM Channels Configuration (PWM Frequency and PWM Duty)

Each PWM generator can be independently configured with different frequency and duty-cycle. The PWM frequency for each channel is determined by the PWM frequency control register (PWM_FREQ_CTRL_x), as shown in Table 2. The PWM duty cycle is managed using the PWM_DUTY_CHx bit in the PWM control register (PWM_DUTY_CTRL_x), as shown in Table 3.

Table 2. PWM Frequency

PWM CHx FREQ BITS PWM FREQUENCY

PWM_CHx_FREQ=00b	80Hz
PWM_CHx_FREQ =01b	100Hz
PWM_CHx_FREQ =10b	200Hz
PWM_CHx_FREQ =11b	2000Hz

Table 3. PWM Duty Control Channelx Register Field Descriptions

Bit	Field	Type	Default	Description
7-0	PWM_DUTY_CHx	R/W	0000000b	00000000b = 0 % PWM Duty 11111111b = 100 % PWM Duty Calculate duty as decimal (xxxxxxxxb) x 1/255

5. Half-Bridge Enable

Following the initial four configuration steps, the final step involves enabling either the high-side or low-side MOSFETs. Once the half-bridge is configured for PWM generation, activation is achieved by enabling one of these switches. Specifically, the HBx_HS_EN bit in the operation control registers (OP_CTRL_1, OP_CTRL_2) is used to enable the highside, while the HBx_LS_EN bit enables the low-side.

Protection Circuits

This device has embedded protective functions such as undervoltage, overvoltage, overcurrent, power on reset, open load, thermal shutdown.

Undervoltage Lockout (UVLO)

When the voltage VS drops below the switch-off voltage threshold, V_{UVLO_FALL}, all output stages are switched off. However, the configuration information remains intact and uncorrupted. The VS undervoltage error bit is also latched high in the device status register (IC_START), and the nFAULT pin is driven low. If VS rises again and reaches the switch on the voltage Vuvlo_RISE threshold, the power stages will be reactivated, and the nFAULT pin will be set to high-impedance. The UVLO error bit remains set until it is manually cleared through the CLR FLT bit.

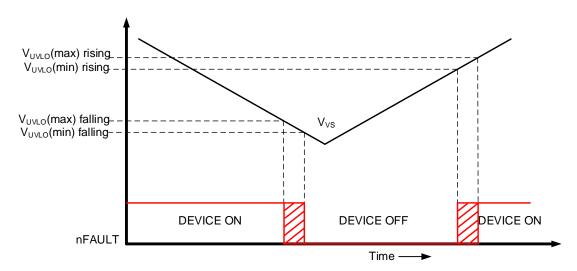


Figure 12. VS UVLO Operation

Overvoltage Protection (OVP)

If the supply voltage VS exceeds the overvoltage voltage threshold, Vove, all output stages are automatically deactivated. Simultaneously, the VS overvoltage error bit is latched high in the device status register (IC START), and the nFAULT pin is driven low. If VS falls below the threshold (V_{OVP} -V_{OVP} _{HYS}), the power stages are enabled, and the nFAULT pin is set to high-impedance. The OVP error bit, however, remains set until cleared using a SPI command through the CLR_FLT bit. Additionally, the device supports an extended overvoltage operation, supporting a higher overvoltage range of up to 33V, by enabling the EXT_OVP bit in the configuration register (CONFIG_CTRL).

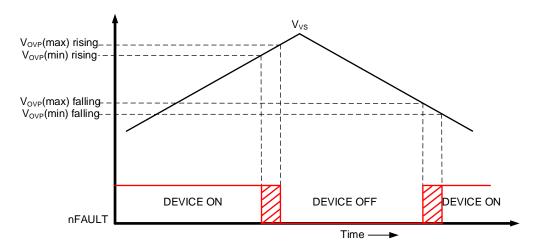


Figure 13. VS OVP Operation

VDD Power on Reset (POR)

In the event the VDD logic supply decreases below the undervoltage threshold, VPOR_FALL, the SPI interfaces shall no longer be functional and the device will enter reset mode. The digital block will be initialized and the output stages are switched off to high impedance. The undervoltage reset is released once VDD voltage levels are above the undervoltage threshold, V_{POR ON}. The reset event is reported in CONFIG CTRL register by the NPOR bit. The NPOR error bit remains reset and latched low until cleared through the CLR_FLT bit.

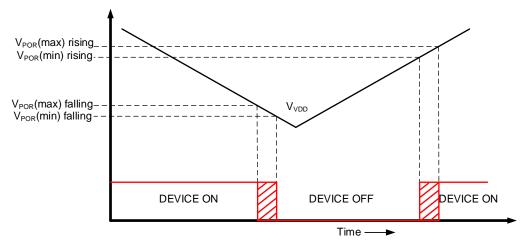


Figure 14. VDD UVLO Operation

Overcurrent Protection (OCP)

The device features overcurrent protection, actively monitoring the current in both the high-side and low-side drivers. If the current exceeds the overcurrent shutdown detection threshold, the affected HS or LS driver is immediately latched off. Simultaneously, the corresponding error bit — either HBx_HS_OCP or HBx_LS_OCP — is set and latched after the specified shutdown time, toc. To restore normal functionality of the power switch after an overcurrent condition has been

resolved, or to check if the fault persists, users can disable the OCP fault indication on the nFAULT pin by activating the OCP REP bit in the CONFIG CTRL register.

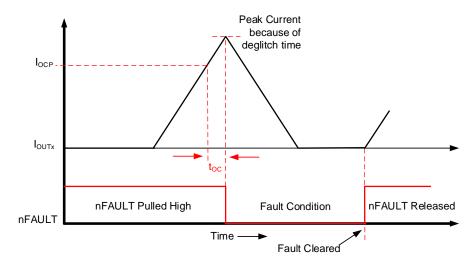


Figure 15. Over Current Protection

Open Load Detection (OLD)

The open-load detection (OLD) function ensures the proper load connection. The device support active OLD and lowcurrent OLD.

Active OLD

Active OLD can identify an open-load condition on the OUTx pins during load operation. As depicted in Figure 16, if the motor current (Ioutx) falls below the open-load current threshold (IoLD) and the fault condition persists for longer than the open-load deglitch time (told), the device will recognize this as an active open-load fault. Under such circumstances, the nFAULT pin will be driven low. Once the open-load condition is resolved and the CLR FLT bit is set to 1, the nFAULT pin is released.

Additionally, the controller can determine the presence of an open-load condition by reading the device registers. The OLD bit in the device status register (IC_STAT) and either the HBx_HS_OLD or HBx_LS_OLD bit in the open-load status register (OLD STAT x) will be set to 1 to indicate an open-load fault.

Two OLD control registers (OLD_CTRL_1 and OLD_CTRL_2) are used to configure the OLD function. The HBx_OLD_DIS bit in the OLD_CTRL_1 register allows users to disable OLD on the OUTx pins, although OLD is enabled by default on the device. The OLD_REP bit in the OLD_CTRL_2 register determines whether the fault is reported on the nFAULT pin. The OLD_OP bit sets the device's response to an active OLD fault: if OLD_OP = 0, the OUTx pins switch to the Hi-Z state, stopping the output drive. Otherwise, the OUTx pins maintain their previous state and do not respond to the OLD fault.

• Low-Current OLD

The device also incorporates a low-current OLD mode, which operates similarly to the active open-load detection. The primary distinction between the low-current open-load and the active open-load lies in the current detection threshold, which is approximately 10 times lower in the low-current open-load mode. Furthermore, this mode is functional only with the low-side MOSFET. Activating the low-current OLD mode simultaneously deactivates the high-side OLD for the respective half-bridge.

As illustrated in Figure 17, if the motor current (I_{OUTx}) drops below the low-current open-load threshold (I_{OLD_LOW}) and the fault condition persists longer than the open-load deglitch time (told), the device will identify a low-current open-load fault. In this event, the nFAULT pin will be driven low. The fault condition can be cleared, and the nFAULT pin released, by resolving the open-load condition and setting the CLR FLT bit to 1.

Additionally, the host controller can read the register to know whether there is an open-load condition. The OLD bit in the device status register (IC STAT) and the HBx LS OLD bit in the open-load status register (OLD STAT x) will be set to 1 to indicate a low-current open-load fault.

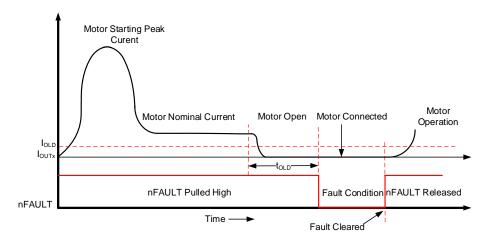


Figure 16. Active Open-load Detection

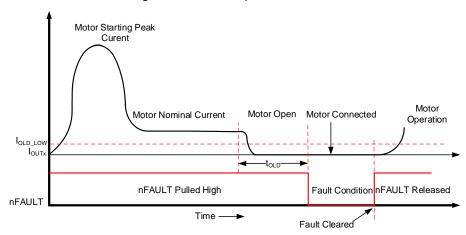


Figure 17. Low-current OLD

Thermal Warning (OTW)

The device offers overtemperature warning and shutdown protection. If one or more temperature sensors reach the warning temperature, the temperature pre-warning bit, OTW, is set in the device status (IC_START) register. This bit is latched and can only be cleared through the SPI, but the output stages remain activated. The reporting of OTW on the nFAULT pin can be enabled by setting the overtemperature warning reporting (OTW_REP) bit in the configuration control (CONFIG_CTRL) register. The nFAULT pin releases when the die temperature decreases below the hysteresis point of the thermal warning (Twarn_HYS).

Thermal Shutdown (TSD)

If one or more temperature sensors reach the shut-down temperature threshold, all outputs are latched off, and the nFAULT pin is driven low. The OTSD bit is set in the device status (IC_START) register. All outputs will be activated, and the nFAULT pin is released when the die temperature decreases below the hysteresis point of the thermal warning (T_{HYS}). The OTSD bit remains latched high, indicating that a thermal event occurred until a clear fault command is issued through the CLR FLT bit. This protection feature cannot be disabled.

Programming Configuration

The device can be controlled using a standard 16-bit SPI interface, with data communication initiated by clocking in the Most Significant Bit (MSB) first. The SPI interface operates as a synchronous serial interface, allowing for address and

data transfer at bit rates up to 5MHz. It is configured for 8-bit byte transfers, making it compatible with a standard SPI bus. Communication over the SPI utilizes four pins: SCLK (synchronous clock), CSB (chip select, active low), SI (data input to the device for write operations), and SO (data output from the device for read operations), as depicted in Figure 18.

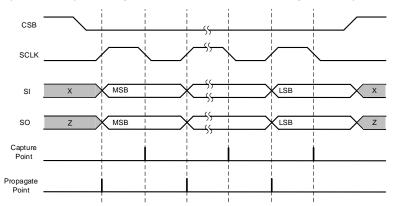


Figure 18. SPI Data Frame

A valid frame on the SPI interface must adhere to the following conditions:

- 1. When the CSB pin is set to high, the device disregards any signals on the SCLK and SI pins, and the SO pin enters a high impedance (Hi-Z) state.
- 2. Data is captured on the falling edge of SCLK, and data is propagated on the rising edge of SCLK.
- 3. The most significant bit (MSB) is always shifted in and out first.
- 4. A complete transaction requires a full sequence of 16 SCLK cycles.
- 5. The data word transmitted to the SI pin must consist of exactly 16 bits neither less nor more.
- 6. For write commands, the current data in the register being written to is shifted out on the SO pin, following the 8-bit command data.

SPI Format

Each SPI communication sequence with the device initiates with an address byte, followed by a data byte. The device's SPI functionality includes 1 Read/Write (R/W) bit at bit position 14; 6 address bits, and 8 data bits. The control registers are READ/WRITE registers. To set the control register to READ, bit 14 in the address byte must be set to '1'; otherwise, set it to '0' for WRITE. As the microcontroller transmits the address byte via the SI pin, the device Status Register data is simultaneously shifted out through the SO pin. The subsequent data byte, comprising of bits 7 to 0, is used to configure the half-bridges or retrieve the device's status information. The mapping of the SPI Registers is shown in Table 6.

Table 4. SI Input Data Word Format

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	put	Dutu		Oillia	1					
		R/W		Address								Da	nta			
Bit	B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	B5	B4	В3	B2	B1	В0
Data	0	WO	A5	A4	А3	A2	A1	A0	D7	D6	D5	D4	D3	D2	D1	D0

Table 5 SO Output Data Word Format

_						1 40	10 01 00	Outp	ut Dutu	,, o, a	. •	46					
					Address								D	ata			
	Bit	B15	B14	B13	B12	B11	B10	В9	B8	В7	B6	B5	B4	В3	B2	B1	В0
	Data	1	1	OTSD	OLD	OCP	UVLO	OV P	NPOR	D7	D6	D5	D4	D3	D2	D1	D0

Daisy Chain

The device is designed to support daisy chain operation with other devices that utilize the same SPI protocol, as demonstrated in Figure 20. In this setup, the controller's output (MO) is connected to the serial input (SI) of the first peripheral device. The serial output (SO) of this device is then connected to the SI of the next peripheral, forming a chain. The SO of the last peripheral in the chain is linked to the controller's input (MI), completing the SPI communication loop.

In a daisy chain configuration, a single chip select (CSB) and a clock signal (SCLK) are distributed in parallel across all peripheral devices. These connections enable the microcontroller to control and access the SPI devices efficiently. Figure 19 illustrates the topology and corresponding waveforms when three devices are interconnected in a series configuration.

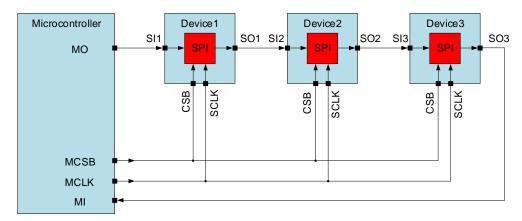


Figure 19. SPI Daisy Chain

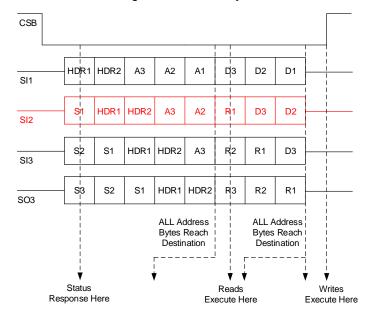


Figure 20. Daisy Chain SPI Operation

In the daisy chain configuration depicted above, the first device in the chain receives data from the controller in the following format, as shown in SI1 of Figure 20:

- 1) 2 bytes of Header
- 2) 3 bytes of Address
- 3) 3 bytes of Data

Once the data has been transmitted through the chain, the controller receives it back in the format illustrated in SO3 of Figure 20:

- 1) 3 bytes of Status
- 2) 2 bytes of Header (which should be identical to the information sent by the controller)
- 3) 3 bytes of Report

The two Header bytes carry critical information, including the number of devices in the chain and a global clear fault command. The N5 to N0 bits in Header1 indicate that up to 63 (26-1) devices can be connected in series per daisy chain

connection. The CLR bit in Header2 is a global clear fault command that resets the fault registers of all devices in the chain. Both Header bytes must start with 1 and 0.

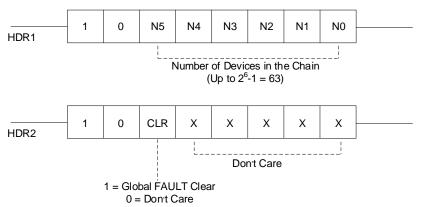


Figure 21. Header Bits

All devices in the configuration will relay their fault status through the status byte, as depicted in Figure 22. This feature allows for convenient and efficient controller fault status monitoring, enhancing the device's overall functionality.

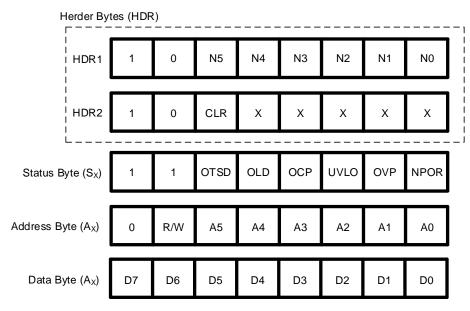


Figure 22. Daisy Chain Read Registers

The device is capable of determining its position in the chain by counting the number of Status bytes that follow the Header byte. As illustrated in Figure 20, Device 2 identifies its position by recognizing one Status byte (S1) following the Header, while Device 3 identifies two Status bytes (S1, S2) behind the Header. When the device determines the position and the total number of devices connected in the chain, each device can load the relevant address and data bytes into its buffer, effectively bypassing irrelevant bits. This method ensures efficient operation, even in a chain comprising up to 63 devices.

Table 6. SY2A58118 Register Map

			iabic	, U. U I ZAUU	i io itogiotoi	map				
Name	7	6	5	4	3	2	1	0	Type	Address
IC_STAT	Reserved	OTSD	OTW	OLD	OCP	UVLO	OVP	NPOR	R	00h
OCP_STAT_1	HB4_HS_OCP	HB4_LS_OCP	HB3_HS_OCP	HB3_LS_OCP	HB2_HS_OCP	HB2_LS_OCP	HB1_HS_OCP	HB1_LS_OCP	R	01h
OCP STAT 2	HB8 HS OCP	HB8 LS OCP	HB7 HS OCP	HB7 LS OCP	HB6 HS OCP	HB6_LS_OCP	HB5 HS OCP	HB5 LS OCP	R	02h
OCP_STAT_3				Re	served				R	03h
OLD_STAT_1	HB4_HS_OLD	HB4_LS_OLD	HB3_HS_OLD	HB3_LS_OLD	HB2_HS_OLD	HB2_LS_OLD	HB1_HS_OLD	HB1_LS_OLD	R	04h
OLD_STAT_2	HB8_HS_OLD	HB8_LS_OLD	HB7_HS_OLD	HB7_LS_OLD	HB6_HS_OLD	HB6_LS_OLD	HB5_HS_OLD	HB5_LS_OLD	R	05h
OLD_STAT_3				Re	served			•	R	06h
CONFIG_CTRL		Res	erved		OCP_REP	OTW_REP	EXT_OVP	CLR_FLT	RW	07h
OP_CTRL_1	HB4_HS_EN	HB4_LS_EN	HB3_HS_EN	HB3_LS_EN	HB2_HS_EN	HB2_LS_EN	HB1_HS_EN	HB1_LS_EN	RW	08h
OP_CTRL_2	HB8_HS_EN	HB8_LS_EN	HB7_HS_EN	HB7_LS_EN	HB6_HS_EN	HB6_LS_EN	HB5_HS_EN	HB5_LS_EN	RW	09h
OP_CTRL_3				Re	served			•	RW	0Ah
PWM_CTRL_1	HB8_PWM	HB7_PWM	HB6_PWM	HB5_PWM	HB4_PWM	HB3_PWM	HB2_PWM	HB1_PWM	RW	0Bh
PWM_CTRL_2	PWM_CH8_DIS	PWM_CH7_DIS	PWM_CH6_DIS	PWM_CH5_DIS	PWM_CH4_DIS	PWM_CH3_DIS	PWM_CH2_DIS	PWM_CH1_DIS	RW	0Ch
FW_CTRL_1	HB8_FW	HB7_FW	HB6_FW	HB5_FW	HB4_FW	HB3_FW	HB2_FW	HB1_FW	RW	0Dh
FW_CTRL_2				Re	served			•	RW	0Eh
PWM MAP CTRL 1	Res	erved		HB2 PWM MAP			HB1 PWM MAP	1	RW	0Fh
PWM_MAP_CTRL_2	Res	erved		HB4_PWM_MAP			HB3_PWM_MAP		RW	10h
PWM_MAP_CTRL_3	Res	erved		HB6_PWM_MAP			HB5_PWM_MAP		RW	11h
PWM_MAP_CTRL_4	Res	erved		HB8_PWM_MAP			HB7_PWM_MAP	RW	12h	
PWM_FREQ_CTRL 1	PWM_CI	H4_FREQ	PWM_CH	H3_FREQ	PWM_CI	12_FREQ	PWM_C	RW	13h	
PWM_FREQ_CTRL 2	PWM_CI	H8_FREQ	PWM_CI	H7_FREQ	PWM_CI	H6_FREQ	PWM_0	CH5_FREQ	RW	14h
PWM DUTY CTRL 1				PWM	DUTY CH1				RW	15h
PWM DUTY CTRL 2				PWM	DUTY CH2				RW	16h
PWM DUTY CTRL 3				PWM	DUTY CH3				RW	17h
PWM DUTY CTRL 4				PWM	DUTY CH4				RW	18h
PWM DUTY CTRL 5				PWM	DUTY CH5				RW	19h
PWM_DUTY_CTRL_6					DUTY CH6				RW	1Ah
PWM DUTY CTRL 7					DUTY CH7					1Bh
PWM DUTY CTRL 8					DUTY CH8					1Ch
SR CTRL 1	HB8 SR			RW RW	1Dh					
SR_CTRL_2					served				RW	1Eh
OLD CTRL 1	HB8 OLD DIS	HB7 OLD DIS	HB6 OLD DIS	HB5 OLD DIS	HB4 OLD DIS	HB3 OLD DIS	HB2 OLD DIS	HB1 OLD DIS	RW	1Fh
OLD CTRL 2	OLD REP	OLD OP				served			RW	20h
OLD CTRL 3	_	OCP DEG	,			Reserved			RW	21h
OLD CTRL 4	HB8 LOLD EN	HB7 LOLD EN	HB6 LOLD EN	HB5 LOLD EN	HB4 LOLD EN	HB3 LOLD EN	HB2 LOLD EN	HB1 LOLD EN	RW	22h

SPI Status Registers

The Status Register are used to report warning and fault conditions. The status registers are read-only registers.

IC_STAT

IC_Status Register (Address =0x00) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	OTSD	OTW	OLD	OCP	UVLO	OVP	NPOR
r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
Reserved	D7	r	Reserved. Always reads as '0'
			Temperature shutdown error detection
OTSD	D6	r	0 _B Junction temperature below temperature shutdown threshold
			1 _B Junction temperature has reached temperature shutdown threshold
			Temperature pre-warning error detection
OTW	D5	r	0 _B Junction temperature below temperature pre-warning threshold
			1 _B Junction temperature has reached temperature pre-warning threshold.
			Open Load error detection
OLD	D4	r	0 _B No Open Load
			1 _B Open load
			Over current error detection
OCP	D3	r	0 _B No Over current
			1 _B Over current
			VS Undervoltage error detection
UVLO	D2	r	0 _B No undervoltage on VS detected
			1 _B Undervoltage on VS detected
			VS Overvoltage error detection
OVP	D1	r	0 _B No overvoltage on VS detected
			1 _B Overvoltage on VS detected
			Not Power on Reset (NPOR) detection
NPOR	D0	r	0 _B POR on EN or VDD supply rail
			1 _B No POR

OCP_STAT_1

Overcurrent Error Status of Half-bridge Outputs 1-4 (Address =0x01) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
HB4_HS_OC	HB4_LS_OC	HB3_HS_OC	HB3_LS_OC	HB2_HS_OC	HB2_LS_OC	HB1_HS_OC	HB1_LS_OC
r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
HB4_HS_OC	D7	r	High-side (HS) switch of half-bridge 4 overcurrent detection 0_B No error on HS4 switch
			1 _B Overcurrent detected on HS4 switch
			Low-side (LS) switch of half-bridge 4 overcurrent detection
HB4_LS_OC	D6	r	0 _B No error on LS4 switch
			1 _B Overcurrent detected on LS4 switch
			High-side (HS) switch of half-bridge 3 overcurrent detection
HB3_HS_OC	D5	r	0 _B No error on HS3 switch
			1 _B Overcurrent detected on HS3 switch
			Low-side (LS) switch of half-bridge 3 overcurrent detection
HB3_LS_OC	D4	r	O _B No error on LS3 switch
			1 _B Overcurrent detected on LS3 switch
			High-side (HS) switch of half-bridge 2 overcurrent detection
HB2_HS_OC	D3	r	0 _B No error on HS2 switch
			1 _B Overcurrent detected on HS2 switch
			Low-side (LS) switch of half-bridge 2 overcurrent detection
HB2_LS_OC	D2	r	O _B No error on LS2 switch
			1 _B Overcurrent detected on LS2 switch
HB1 HS OC	D1	r	High-side (HS) switch of half-bridge 1 overcurrent detection
1151_110_00		<u>'</u>	O _B No error on HS1 switch

			1 _B Overcurrent detected on HS1 switch
HB1_LS_OC	D0	r	Low-side (LS) switch of half-bridge 1 overcurrent detection OB No error on LS1 switch 1B Overcurrent detected on LS1 switch

OCP_STAT_2

Overcurrent Error Status of Half-bridge Outputs 5-8 (Address =0x02) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
HB8_HS_OC	HB8_LS_OC	HB7_HS_OC	HB7_LS_OC	HB6_HS_OC	HB6_LS_OC	HB5_HS_OC	HB5_LS_OC
r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
			High-side (HS) switch of half-bridge 8 overcurrent detection
HB8_HS_OC	D7	r	0 _B No error on HS8 switch
			1 _B Overcurrent detected on HS8 switch
			Low-side (LS) switch of half-bridge 8 overcurrent detection
HB8_LS_OC	D6	r	O _B No error on LS8 switch
			1 _B Overcurrent detected on LS8 switch
			High-side (HS) switch of half-bridge 7 overcurrent detection
HB7_HS_OC	D5	r	0 _B No error on HS7 switch
			1 _B Overcurrent detected on HS7 switch
			Low-side (LS) switch of half-bridge 7 overcurrent detection
HB7_LS_OC	D4	r	0 _B No error on LS7 switch
			1 _B Overcurrent detected on LS7 switch
			High-side (HS) switch of half-bridge 6 overcurrent detection
HB6_HS_OC	D3	r	0 _B No error on HS6 switch
			1 _B Overcurrent detected on HS6 switch
			Low-side (LS) switch of half-bridge 6 overcurrent detection
HB6_LS_OC	D2	r	0 _B No error on LS6 switch
			1 _B Overcurrent detected on LS6 switch
			High-side (HS) switch of half-bridge 5 overcurrent detection
HB5_HS_OC	D1	r	0 _B No error on HS5 switch
			1 _B Overcurrent detected on HS5 switch
			Low-side (LS) switch of half-bridge 5 overcurrent detection
HB5_LS_OC	D0	r	O _B No error on LS5 switch
			1 _B Overcurrent detected on LS5 switch

OCP_STAT_3

Overcurrent Error Status of Half-bridge Outputs 9-12 (Address =0x03) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
			Rese	erved			
r	r	r	r	r	r	r	r

Field	Bits	Type	Description
Reserved	D7:D0	r	Reserved. Always reads as '0'

OLD_STAT_1

Open Load Error Status of Half-bridge Outputs 1-4 (Address =0x04) [reset =0x00]

	D7	D6	D5	D4	D3	D2	D1	D0
Ī	HB4_HS_OL	HB4_LS_OL	HB3_HS_OL	HB3_LS_OL	HB2_HS_OL	HB2_LS_OL	HB1_HS_OL	HB1_LS_OL
	r	r	r	r	r	r	r	r

Field	Bits	Type	Description
			High-side (HS) switch of half-bridge 4 open load detection
HB4_HS_OL	D7	r	0 _B No error on HS4 switch (default value)
			1 _B Open load detected on HS4 switch
			Low-side (LS) switch of half-bridge 4 open load detection
HB4_LS_OL	D6	r	O _B No error on LS4 switch (default value)
			1 _B Open load detected on LS4 switch

			High-side (HS) switch of half-bridge 3 open load detection
HB3_HS_OL	D5	r	0 _B No error on HS3 switch (default value)
			1 _B Open load detected on HS3 switch
			Low-side (LS) switch of half-bridge 3 open load detection
HB3_LS_OL	D4	r	0 _B No error on LS3 switch (default value)
			1 _B Open load detected on LS3 switch
			High-side (HS) switch of half-bridge 2 open load detection
HB2_HS_OL	D3	r	0 _B No error on HS2 switch (default value)
			1 _B Open load detected on HS2 switch
			Low-side (LS) switch of half-bridge 2 open loadt detection
HB2_LS_OL	D2	r	0 _B No error on LS2 switch (default value)
			1 _B Open load detected on LS2 switch
			High-side (HS) switch of half-bridge 1 open load detection
HB1_HS_OL	D1	r	0 _B No error on HS1 switch (default value)
			1 _B Open load detected on HS1 switch
			Low-side (LS) switch of half-bridge 1 open load detection
HB1_LS_OL	D0	r	0 _B No error on LS1 switch (default value)
			1 _B Open load detected on LS1 switch

OLD_STAT_2

Open Load Error Status of Half-bridge Outputs 5-8 (Address =0x05) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
HB8_HS_OL	HB8_LS_OL	HB7_HS_OL	HB7_LS_OL	HB6_HS_OL	HB6_LS_OL	HB5_HS_OL	HB5_LS_OL
r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
HB8_HS_OL	D7	r	High-side (HS) switch of half-bridge 8 open load detection 0 _B No error on HS8 switch 1 _B Open load detected on HS8 switch
HB8_LS_OL	D6	r	Low-side (LS) switch of half-bridge 8 open load detection 0 _B No error on LS8 switch 1 _B Open load detected on LS8 switch
HB7_HS_OL	D5	r	High-side (HS) switch of half-bridge 7 open load detection 0 _B No error on HS7 switch 1 _B Open load detected on HS7 switch
HB7_LS_OL	D4	r	Low-side (LS) switch of half-bridge 7 open load detection 0 _B No error on LS7 switch 1 _B Open load detected on LS7 switch
HB6_HS_OL	D3	r	High-side (HS) switch of half-bridge 6 open load detection 0 _B No error on HS6 switch 1 _B Open load detected on HS6 switch
HB6_LS_OL	D2	r	Low-side (LS) switch of half-bridge 6 open load detection 0 _B No error on LS6 switch 1 _B Open load detected on LS6 switch
HB5_HS_OL	D1	r	High-side (HS) switch of half-bridge 5 open load detection 0 _B No error on HS5 switch 1 _B Open load detected on HS5 switch
HB5_LS_OL	D0	r	Low-side (LS) switch of half-bridge 5 open load detection 0 _B No error on LS5 switch 1 _B Open load detected on LS5 switch

OLD_STAT_3

Open Load Error Status of Half-bridge Outputs 9-12 (Address =0x06) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0					
	Reserved											
r r r r r r												

Field	Bits	Type	Description
Reserved	D7:D0	r	Reserved. Always reads as '0'

SPI Control Registers

The Control Register are used to configure the device. The control registers are read and write capable.

CONFIG_CTRL

Configuration Register (Address =0x07) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
Reserved	Reserved	Reserved	Reserved	OCP_REG	OTW_REG	EXT_OVP	CLR_FLT
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
Reserved	D7	r/w	Reserved. Always reads as '0'
Reserved	D6	r/w	Reserved. Always reads as '0'
Reserved	D5	r/w	Reserved. Always reads as '1'
Reserved	D4	r/w	Reserved. Always reads as '0'
OCD DEC	G D3	m/sec	0 _B Overcurrent condition is reported in nFAULT pin
OCP_REG		r/w	1 _B Overcurrent condition warning is not reported in nFAULT pin
OTW DEC	D2	m/sec	0 _B Overtemperature warning is not reported in nFAULT pin
OTW_REG	D2	r/w	1 _B Overtemperature warning is reported in nFAULT pin
EVT OVD	D1	m/sec	0 _B Overvoltage protection threshold is at 21V min.
EXT_OVP	וט	r/w	1 _B Overvoltage protection threshold is at 32.7V min.
CLD ELT	DO	r/w	0 _B Faults not cleared
CLR_FLT	D0	I/W	1 _B Clear all faults

OP_CTRL_1

Half-bridge Output Control 1(Address =0x08) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
HB4_HS_EN	HB4_LS_EN	HB3_HS_EN	HB3_LS_EN	HB2_HS_EN	HB2_LS_EN	HB1_HS_EN	HB1_LS_EN
r/w							

Field	Bits	Туре	Description
HB4_HS_EN	D7	r/w	Half-bridge output 4 High side switch enable 0 _B HS4 OFF
			1 _B HS4 ON
			Half-bridge output 4 Low side switch enable
HB4_LS_EN	D6	r/w	0 _B LS4 OFF
			1 _B LS4 ON
1100 110 511	5-	,	Half-bridge output 3 High side switch enable
HB3_HS_EN	D5	r/w	0 _B HS3 OFF
			1 _B HS3 ON
HB3 LS EN	D4	r/w	Half-bridge output 3 Low side switch enable 0 _B LS3 OFF
HD3_L3_EIN	D4	1/ VV	1 _B LS3 ON
			Half-bridge output 2 High side switch enable
HB2_HS_EN	D3	r/w	0 _B HS2 OFF
1152_116_211		.,	1 _B HS2 ON
			Half-bridge output 2 Low side switch enable
HB2_LS_EN	D2	r/w	0 _B LS2 OFF
			1 _B LS2 ON
			Half-bridge output 1 High side switch enable
HB1_HS_EN	D1	r/w	0 _B HS1 OFF
			1 _B HS1 ON
			Half-bridge output 1 Low side switch enable
HB1_LS_EN	D0	r/w	0B LS1 OFF
			1B LS1 ON

OP_CTRL_2

Half-bridge Output Control 2 (Address =0x09) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
HB8_HS_EN	HB8_LS_EN	HB7_HS_EN	HB7_LS_EN	HB6_HS_EN	HB6_LS_EN	HB5_HS_EN	HB5_LS_EN

| r/w |
|-----|-----|-----|-----|-----|-----|-----|-----|

Field	Bits	Type	Description
HB8_HS_EN	D7	r/w	Half-bridge output 8 High side switch enable 0 _B HS8 OFF
			1 _B HS8 ON
			Half-bridge output 8 Low side switch enable
HB8_LS_EN	D6	r/w	0 _B LS8 OFF
			1 _B LS8 ON
HB7_HS_EN	D5	r/w	Half-bridge output 7 High side switch enable 0 _B HS7 OFF
TIDI_TIO_LIV	23	17 VV	1 _B HS7 ON
			Half-bridge output 7 Low side switch enable
HB7_LS_EN	D4	r/w	O _B LS7 OFF
			1 _B LS7 ON
LIDO LIO EN	D0	-4	Half-bridge output 6 High side switch enable
HB6_HS_EN	D3	r/w	0 _B HS6 OFF 1 _B HS6 ON
			Half-bridge output 6 Low side switch enable
HB6 LS EN	D2	r/w	OR LS6 OFF
			1 _B LS6 ON
			Half-bridge output 5 High side switch enable
HB5_HS_EN	D1	r/w	0 _B HS5 OFF
			1 _B HS5 ON
LIDE LO EN	Do	-4	Half-bridge output 5 Low side switch enable
HB5_LS_EN	D0	r/w	0 _B LS5 OFF 1 _B LS5 ON
			IB LOO OIN

OP_CTRL_3

Half-bridge output control 3 (Address =0x0A) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
			Rese	erved			
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Type	Description
Reserved	D7:D0	r/w	Reserved. Always reads as '0'

PWM_CTRL_1

Half-bridge PWM Control 1 (Address =0x0B) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
HB8_PWM	HB7_PWM	HB6_PWM	HB5_PWM	HB4_PWM	HB3_PWM	HB2_PWM	HB1_PWM
r/w							

Field	Bits	Type	Description
HB8 PWM	D7	r/w	0 _B Half-bridge 8 is operating in continuous mode
TIDO_T VVIVI	D1	1 / VV	1 _B Half-bridge 8 is operating in PWM mode
HB7 PWM	D6	r/w	0 _B Half-bridge 7 is operating in continuous mode
TIDI_I VVIVI	Do	1/ VV	1 _B Half-bridge 7 is operating in PWM mode
HB6 PWM	D5	r/w	0 _B Half-bridge 6 is operating in continuous mode
I IDO_F VV IVI	D3	17 VV	1 _B Half-bridge 6 is operating in PWM mode
HB5 PWM	D4	r/w	0 _B Half-bridge 5 is operating in continuous mode
LIDO_LAAIAI	D4	r/W	1 _B Half-bridge 5 is operating in PWM mode
HB4 PWM	D3	r/w	0 _B Half-bridge 4 is operating in continuous mode
I ID4_F VV IVI	DS	17 VV	1 _B Half-bridge 4 is operating in PWM mode
HB3 PWM	D2	r/w	0 _B Half-bridge 3 is operating in continuous mode
I IDO_F VV IVI	DZ	17 VV	1 _B Half-bridge 3 is operating in PWM mode
HB2 PWM	D1	r/w	0 _B Half-bridge 2 is operating in continuous mode
I IDZ_F VVIVI	וט	1 / VV	1 _B Half-bridge 2 is operating in PWM mode
HB1 PWM	D0	r/w	0 _B Half-bridge 1 is operating in continuous mode
I ID I _F VV IVI	D0	1 / VV	1 _B Half-bridge 1 is operating in PWM mode

PWM CTRL 2

Half-bridge PWM Control 2 (Address =0x0C) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
PWM_CH8_ DIS	PWM_CH7_ DIS	PWM_CH6_ DIS	PWM_CH5_ DIS	PWM_CH4_ DIS	PWM_CH3_ DIS	PWM_CH2_ DIS	PWM_CH1_ DIS
,	,	,	,	,	,	,	,
r/w							

Field	Bits	Туре	Description
PWM CH8 DIS	D7	r/w	0 _B PWM Generator-8 is enabled
1 WW_CHO_DIO	<i>D1</i>	17 VV	1 _B PWM Generator-8 is disabled
PWM CH7 DIS	D6	r/w	0 _B PWM Generator-7 is enabled
T WW_CITT_DIS	DO	17 VV	1 _B PWM Generator-7 is disabled
PWM CH6 DIS	D5	r/w	0 _B PWM Generator-6 is enabled
FWW_CHO_DIS	D3	1 / VV	1 _B PWM Generator-6 is disabled
PWM CH5 DIS	D4	r/w	0 _B PWM Generator-5 is enabled
FWW_CHS_DIS	D4	1 / VV	1 _B PWM Generator-5 is disabled
PWM CH4 DIS	D3	r/w	0 _B PWM Generator-4 is enabled
1 WW_CH4_DI3	D3	17 VV	1 _B PWM Generator-4 is disabled
PWM CH3 DIS	D2	r/w	0 _B PWM Generator-3 is enabled
T WW_CHIS_DIS	DZ	17 VV	1 _B PWM Generator-3 is disabled
PWM CH2 DIS	D1	r/w	O _B PWM Generator-2 is enabled
T WWI_CITZ_DIG	וט	17 VV	1 _B PWM Generator-2 is disabled
PWM CH1 DIS	D0	r/w	0 _B PWM Generator-1 is enabled
I WWW_CITI_DIG	טם	1 / VV	1 _B PWM Generator-1 is disabled

FW _CTRL_1

Free-wheeling Configuration 1 (Address =0x0D) [reset =0x00]

-			(- <u> </u>				
	D7	D6	D5	D4	D3	D2	D1	D0
	FW_HB8	FW_HB7	FW_HB6	FW_HB5	FW_HB4	FW_HB3	FW_HB2	FW_HB1
	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
			HB8 free-wheeling configuration
FW_HB8	D7	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling
			HB7 free-wheeling configuration
FW_HB7	D6	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling
			HB6 free-wheeling configuration
FW_HB6	D5	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling
			HB5 free-wheeling configuration
FW_HB5	D4	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling
			HB4 free-wheeling configuration
FW_HB4	D3	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling
			HB3 free-wheeling configuration
FW_HB3	D2	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling
			HB2 free-wheeling configuration
FW_HB2	D1	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling
			HB1 free-wheeling configuration
FW_HB1	D0	r/w	0 _B Passive free-wheeling
			1 _B Active free-wheeling

FW CTRL 2

Free-wheeling Configuration 2 (Address =0x0E) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
			Rese	erved			
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
Reserved	D7:D0	r/w	Reserved. Always reads as '0'

PWM_MAP_CTRL_1

Half-bridge Output PWM Map Control 1 (Address =0x0F) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
Rese	erved		HB2_PWM_MAF)		HB1_PWM_MAP)
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
Reserved	D7:D6	r/w	Reserved. Always reads as '0'
HB2_PWM_MAP	D5:D3	r/w	Half-bridge output 2 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5 101 _B PWM control with PWM Channel 6 110 _B PWM control with PWM Channel 7 111 _B PWM control with PWM Channel 8
HB1_PWM_MAP	D2:D0	r/w	Half-bridge output 1 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5 101 _B PWM control with PWM Channel 6 110 _B PWM control with PWM Channel 7 111 _B PWM control with PWM Channel 8

PWM_MAP_CTRL_2

Half-bridge Output PWM Map Control 2 (Address =0x10) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
Reserved			HB4_PWM_MAF)		HB3_PWM_MAF	
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
Reserved	D7:D6	r/w	Reserved. Always reads as '0'
HB4_PWM_MAP	D5:D3	r/w	Half-bridge output 4 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5 101 _B PWM control with PWM Channel 6 110 _B PWM control with PWM Channel 7 111 _B PWM control with PWM Channel 8
HB3_PWM_MAP	D2:D0	r/w	Half-bridge output 3 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5

101 _B PWM control with PWM Channel 6
110 _B PWM control with PWM Channel 7
111 _B PWM control with PWM Channel 8

PWM_MAP_CTRL_3
Half-bridge Output PWM Map Control 3 (Address =0x11) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
Reserved			HB6_PWM_MAF)		HB5_PWM_MAP	1
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
Reserved	D7:D6	r/w	Reserved. Always reads as '0'
HB6_PWM_MAP	D5:D3	r/w	Half-bridge output 6 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5 101 _B PWM control with PWM Channel 6 110 _B PWM control with PWM Channel 7 111 _B PWM control with PWM Channel 8
HB5_PWM_MAP	D2:D0	r/w	Half-bridge output 5 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5 101 _B PWM control with PWM Channel 6 110 _B PWM control with PWM Channel 7 111 _B PWM control with PWM Channel 8

PWM_MAP_CTRL_4
Half-bridge Output PWM Map Control 4 (Address =0x12) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
Reserved			HB8_PWM_MAF)		HB7_PWM_MAP)
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
Reserved	D7:D6	r/w	Reserved. Always reads as '0'
HB8_PWM_MAP	D5:D3	r/w	Half-bridge output 8 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5 101 _B PWM control with PWM Channel 6 110 _B PWM control with PWM Channel 7 111 _B PWM control with PWM Channel 8
HB7_PWM_MAP	D2:D0	r/w	Half-bridge output 7 mode select 000 _B PWM control with PWM Channel 1 001 _B PWM control with PWM Channel 2 010 _B PWM control with PWM Channel 3 011 _B PWM control with PWM Channel 4 100 _B PWM control with PWM Channel 5 101 _B PWM control with PWM Channel 6 110 _B PWM control with PWM Channel 7 111 _B PWM control with PWM Channel 8

PWM_FREQ_CTRL_1

PWM Channel Frequency Select 1 (Address =0x13) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
PWM_CI	PWM_CH4_FREQ		13_FREQ	PWM_CH	12_FREQ	PWM_CF	H1_FREQ
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
PWM_CH4_FRE Q	D7:D6	r/w	PWM Channel 4 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz
PWM_CH3_FRE Q	RE D5:D4 r/w		PWM Channel 3 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz
PWM_CH2_FRE Q	D3:D2	r/w	PWM Channel 2 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz
PWM_CH1_FRE Q	D1:D0	r/w	PWM Channel 1 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz

PWM_FREQ_CTRL_2

PWM Channel Frequency Select 2 (Address =0x14) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
PWM_CH8_FREQ		PWM_CH	17_FREQ	PWM_CF	6_FREQ	PWM_CH	l5_FREQ
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
PWM_CH8_FRE Q	D7:D6	r/w	PWM Channel 8 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz
PWM_CH7_FRE Q	D5:D4	r/w	PWM Channel 7 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz
PWM_CH6_FRE Q	D3:D2	r/w	PWM Channel 6 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz
PWM_CH5_FRE Q	D1:D0	r/w	PWM Channel 5 frequency select 00 _B PWM frequency: 80Hz 01 _B PWM frequency: 100Hz 10 _B PWM frequency: 200Hz 11 _B PWM frequency: 2000Hz

PWM DUTY CTRL 1

PWM Channel 1 Duty Cycle Configuration (Address =0x15) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0	
PWM_DUTY_CH1								
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

Field	Bits	Type	Description
PWM_DUTY_CH1	D7:D0	r/w	PWM Channel 1 Duty Cycle configuration 0000 0000 _B 100% OFF xxxx xxxx _B parts of 255 ON 1111 1111 _B 100% ON

PWM_DUTY_CTRL_2

PWM Channel 2 Duty Cycle Configuration (Address =0x16) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0		
	PWM_DUTY_CH2								
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		

Field	Bits	Туре	Description
PWM_DUTY_CH2	D7:D0	r/w	PWM Channel 2 Duty Cycle configuration 0000 0000 _B 100% OFF xxxx xxxx _B parts of 255 ON 1111 1111 _B 100% ON

PWM_DUTY_CTRL_3

PWM Channel 3 Duty Cycle Configuration (Address =0x17) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0		
	PWM_DUTY_CH3								
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		

Field	Bits	Type	Description
PWM_DUTY_CH3	D7:D0	r/w	PWM Channel 3 Duty Cycle configuration 0000 0000 _B 100% OFF xxxx xxxx _B parts of 255 ON 1111 1111 _B 100% ON

PWM_DUTY_CTRL_4

PWM Channel 4 Duty Cycle Configuration (Address =0x18) [reset =0x00]

•	TTITI OHAHIIO	. Daily Dyold Di	ornigaration (7 to	u. 000 0x 10/ [occi checi				
	D7	D6	D5	D4	D3	D2	D1	D0	
	PWM_DUTY_CH4								
	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

Field	Bits	Type	Description
PWM_DUTY_CH4	D7:D0	r/w	PWM Channel 4 Duty Cycle configuration 0000 0000 _B 100% OFF xxxx xxxx _B parts of 255 ON 1111 1111 _B 100% ON

PWM_DUTY_CTRL_5

PWM Channel 5 Duty Cycle Configuration (Address =0x19) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0		
	PWM_DUTY_CH5								
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		

Field	Bits	Type	Description
PWM_DUTY_CH5	D7:D0	r/w	PWM Channel 5 Duty Cycle configuration

0000 0000 _В 100% OFF
XXXX XXXXB parts of 255 ON
1111 1111 _B 100% ON

PWM_DUTY_CTRL_6

PWM Channel 6 Duty Cycle Configuration (Address =0x1A) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
			PWM_DU	JTY_CH6			
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
PWM_DUTY_CH6	D7:D0	r/w	PWM Channel 6 Duty Cycle configuration 0000 0000 _B 100% OFF xxxx xxxx _B parts of 255 ON 1111 1111 _B 100% ON

PWM DUTY CTRL 7

PWM Channel 7 Duty Cycle Configuration (Address =0x1B) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
			PWM_DU	JTY_CH7			
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Type	Description
PWM_DUTY_CH7	D7:D0	r/w	PWM Channel 7 Duty Cycle configuration 0000 0000 _B 100% OFF xxxx xxxxx _B parts of 255 ON 1111 1111 _B 100% ON

PWM_DUTY_CTRL_8

PWM Channel 8 Duty Cycle Configuration (Address =0x1C) [reset =0x00]

	D7	D6	D5	D4	D3	D2	D1	D0		
PWM DUTY CH8										
	r/w									

Field	Bits	Type	Description
PWM_DUTY_CH8	D7:D0	r/w	PWM Channel 8 Duty Cycle configuration 0000 0000 _B 100% OFF xxxx xxxxx _B parts of 255 ON 1111 1111 _B 100% ON

SR _CTRL_1

The Slew Rate Configuration 1 (Address =0x1D) [reset =0x00]

			, <u>L</u>	1			
D7	D6	D5	D4	D3	D2	D1	D0
HB8_SR	HB7_SR	HB6_SR	HB5_SR	HB4_SR	HB3_SR	HB2_SR	HB1_SR
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Field	Bits	Туре	Description
HB8_SR	D7	r/w	HB8 slew rate configuration 0 _B 1V/μs 1 _B 3.7V/μs
HB7_SR	D6	r/w	HB7 slew rate configuration 0 _B 1V/μs 1 _B 3.7V/μs
HB6_SR	D5 r/w	r/w	HB6 slew rate configuration 0 _B 1V/μs 1 _B 3.7V/μs
HB5_SR	D4	r/w	HB5 slew rate configuration 0 _B 1V/μs

			1 _B 3.7V/µs
HB4_SR	D3	r/w	HB4 slew rate configuration 0 _B 1V/µs 1 _B 3.7V/µs
HB3_SR	D2	r/w	HB3 slew rate configuration 0 _B 1V/µs 1 _B 3.7V/µs
HB2_SR	D1	r/w	HB2 slew rate configuration 0 _B 1V/µs 1 _B 3.7V/µs
HB1_SR	D0	r/w	HB1 slew rate configuration $0_B 1V/\mu s$ $1_B 3.7V/\mu s$

SR _CTRL_2

The slew rate configuration 2 (Address =0x1E) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0		
			Rese	erved					
r/w r/w r/w r/w r/w r/w									

Field	Bits	Туре	Description
Reserved	D7:D0	r/w	Reserved. Always reads as '0'

OLD _CTRL_1

The Open Load Detect Control 1 (Address =0x1F) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
HB8_OLD_DI	HB7_OLD_DI	HB6_OLD_DI	HB5_OLD_DI	HB4_OLD_DI	HB3_OLD_DI	HB2_OLD_DI	HB1_OLD_DI
S	S	S	S	S	S	S	S
r/w							

Field	Bits	Туре	Description
			HB8 open load detect configuration
HB8_OLD_DIS	D7	r/w	0 _B Open-load detection on half-bridge 8 is enable
			1 _B Open-load detection on half-bridge 8 is disable
			HB7 open load detect configuration
HB7_OLD_DIS	D6	r/w	0 _B Open-load detection on half-bridge 7 is enable
			1 _B Open-load detection on half-bridge 7 is disable
			HB6 open load detect configuration
HB6_OLD_DIS	D5	r/w	0 _B Open-load detection on half-bridge 6 is enable
			1 _B Open-load detection on half-bridge 6 is disable
			HB5 open load detect configuration
HB5_OLD_DIS	D4	r/w	0 _B Open-load detection on half-bridge 5 is enable
			1 _B Open-load detection on half-bridge 5 is disable
			HB4 open load detect configuration
HB4_OLD_DIS	D3	r/w	0 _B Open-load detection on half-bridge 4 is enable
			1 _B Open-load detection on half-bridge 4 is disable
			HB3 open load detect configuration
HB3_OLD_DIS	D2	r/w	O _B Open-load detection on half-bridge 3 is enable
			1 _B Open-load detection on half-bridge 3 is disable
			HB2 open load detect configuration
HB2_OLD_DIS	D1	r/w	0 _B Open-load detection on half-bridge 2 is enable
			1 _B Open-load detection on half-bridge 2 is disable
			HB1 open load detect configuration
HB1_OLD_DIS	D0	r/w	O _B Open-load detection on half-bridge 1 is enable
			1 _B Open-load detection on half-bridge 1 is disable

OLD CTRL 2

The Open Load Detect Control 2 (Address =0x20) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0	
OLD_REP	OLD_OP		Reserved					
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

Field	Bits	Type	Description
OLD REP	D7	r/w	0 _B Report on nFAULT pin during OLD condition
OLD_NEF	D1	1 / VV	1 _B No report on nFAULT pin during OLD condition
	D6	m/ss.	O _B Half-bridge are not active after OLD condition detect
OLD_OP	סט	r/w	1 _B Half-bridge are active after OLD condition detect
Reserved	D5:D0	r/w	Reserved. Always reads as '0'

OLD _CTRL_3

The Open Load Detect Control 3 (Address =0x21) [reset =0x00]

D7	D6	D5	D4	D3	D2	D1	D0
OCP_DEG					Reserved		
r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

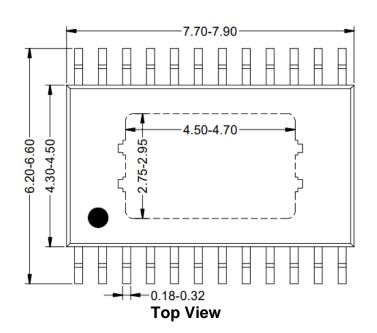
Field	Bits	Туре	Description
OCP_DEG	D7:D5	r/w	000 _B OCP deglitch time is 10μs 001 _B OCP deglitch time is 5μs 010 _B OCP deglitch time is 2.5μs 011 _B OCP deglitch time is 1μs 100 _B OCP deglitch time is 60μs 101 _B OCP deglitch time is 40μs 110 _B OCP deglitch time is 30μs 111 _B OCP deglitch time is 20μs
Reserved	D4:D0	r/w	Reserved. Always reads as '0'

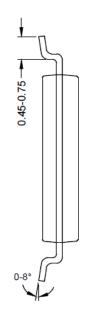
OLD CTRL 4

The open load detect control 4 (Address =0x22) [reset =0x00]

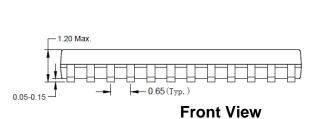
		1. 10.0					
D7	D6	D5	D4	D3	D2	D1	D0
HB8_OLD_E	HB7_OLD_E	HB6_OLD_E	HB5_OLD_E	HB4_OLD_E	HB3_OLD_E	HB2_OLD_E	HB1_OLD_E
N	N	N	N	N	N	N	N
r/w							

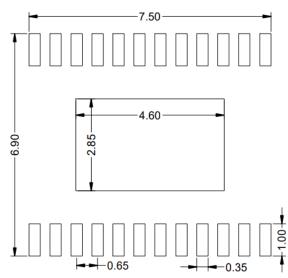
Field	Bits	Type	Description
			HB8 low-current OLD detect configuration
HB8_OLD_ EN	D7	r/w	0 _B Low-current OLD detection on half-bridge 8 is disable
			1 _B Low-current OLD detection on half-bridge 8 is enable
			HB7 low-current OLD detect configuration
HB7_OLD_ EN	D6	r/w	0 _B Low-current OLD detection on half-bridge 7 is disable
			1 _B Low-current OLD detection on half-bridge 7 is enable
			HB6 low-current OLD detect configuration
HB6_OLD_EN	D5	r/w	0 _B Low-current OLD detection on half-bridge 6 is disable
			1 _B Low-current OLD detection on half-bridge 6 is enable
			HB5 low-current OLD detect configuration
HB5_OLD_ EN	D4	r/w	0 _B Low-current OLD detection on half-bridge 5 is disable
			1 _B Low-current OLD detection on half-bridge 5 is enable
			HB4 low-current OLD detect configuration
HB4_OLD_ EN	D3	r/w	0 _B Low-current OLD detection on half-bridge 4 is disable
			1 _B Low-current OLD detection on half-bridge 4 is enable
			HB3 low-current OLD detect configuration
HB3_OLD_ EN	D2	r/w	0 _B Low-current OLD detection on half-bridge 3 is disable
			1 _B Low-current OLD detection on half-bridge 3 is enable
			HB2 low-current OLD detect configuration
HB2_OLD_ EN	D1	r/w	0 _B Low-current OLD detection on half-bridge 2 is disable
			1 _B Low-current OLD detection on half-bridge 2 is enable



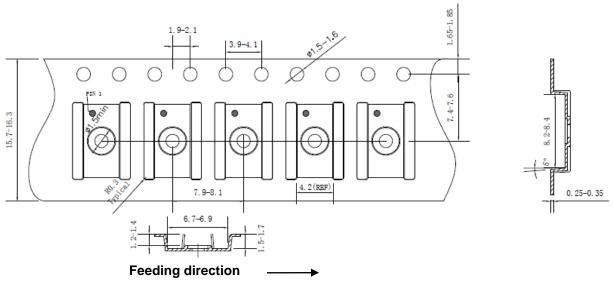


			HB1 low-current OLD detect configuration
HB1_OLD_ EN	D0	r/w	0 _B Low-current OLD detection on half-bridge 1 is disable
			1 _B Low-current OLD detection on half-bridge 1 is enable

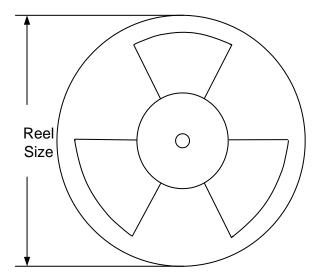



TSSOP24E Package Outline Drawing

Side View


Recommended PCB Layout (Reference only)

Notes: All dimension in millimeter and exclude mold flash & metal burr.



Tape and Reel Information

Tape Dimensions and Pin 1 Orientation

Reel Dimensions

Package Types	Tape Width (mm)	Pocket Pitch(mm)	Reel Size (Inch)	Trailer Length(mm)	Leader Length (mm)	Qty per Reel
TSSOP24E	16	8	13"	400	400	3000

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Revision Revision Date		Description	Pages changed
1.0	Nov 21, 2023	Initial Release	
1.0A	Dec 07, 2023	 EC table condition, VDD changes from 3.15V~5.25V to 3.15V~5.5V;VS changes form 5.5V to 4.5V For Register Section, PWM_DUTY_CHx is changed to PWM_DUTY_CTRL_x page 5 VDD min is changed from 3V to 3.15V 	5,6,8,34,35
1.0B	Mar 10, 2024	In register map, modify PWM_FREQ_CTRL_1/2 description	21

IMPORTANT NOTICE

- Right to make changes. Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- Suitability for use. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- Terms and conditions of commercial sale. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2024 Silergy All Rights Reserved.