
High Performance, High Fidelity 30W Digital Audio-Power Amplifier

General Description

The SY24145S is a $2\times30W$, digital audio power amplifier for driving bridge-tied stereo speakers. One serial data input allows processing of up to two discrete audio channels and seamless integration to most digital audio processors. The SY24145S is an I^2S slave device receiving all clocks from the external sources.

The SY24145S has the essential audio signal processing functions like dynamic range control, loudness control and parametric equalization.

Ordering Information

Ordering Number	Package type	Note
SY24145SGAC	TQFP7×7-48E	

Applications

- LCD TV, LED TV or Monitor
- Digital Speaker, Bluetooth Speaker
- Sound Bar

Features

- 2CH Stereo(30W×2BTL)
- 2.0 BTL Mode or PBTL Mode Support
- 4.5V to 28V PVDD Range
- 32kHz to 96kHz Sample Rate Support (LJ/RJ/I²S)
- 4 I²C Slave Addresses
- Independent Channel Volume Controls with 48dB to Mute
- SDATA Generator (I²S Output)
- Two DC Blocking Filters
- 18 PEQs or 12 PEQs + 6 SPEQs Each Channel for Speaker Protection and Speaker Compensation
- 3 Bands Dynamic Range Control Plus a Post Dynamic Range Control
- Loudness Control
- Power Level Meter
- 3-wire I²S Digital Audio Interface without MCLK
- Thermal, Over Current, Short Circuit, Short Load, Open Load Protections and EQ/DRC Coefficients Checksum
- Support Automatic Audio Sample Rate Detection
- Surface Mount, TQFP 48-Pin, 7mm×7mm

Typical Application

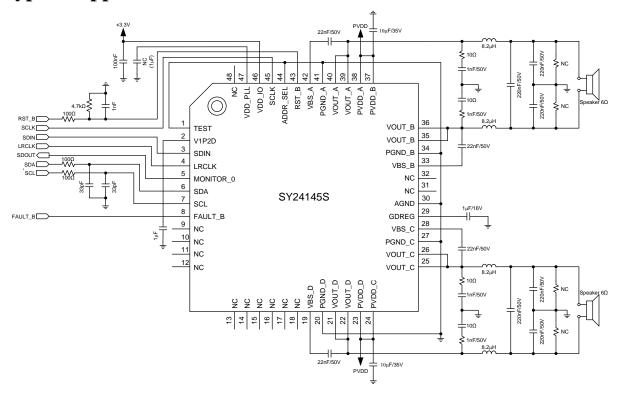
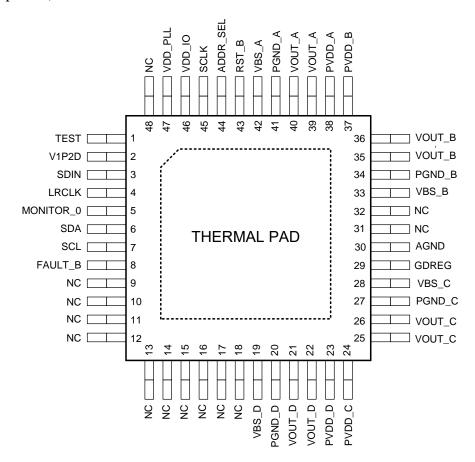



Figure 1. Typical Application Circuit

Pinout (top view)

 $(TQFP7 \times 7-48E)$

Marking Diagram

Note:

- (1) "45S" is the partial part number, fixed.
- (2) "CYRxyz" is the top marking code. (device code: CYR, x=year code, y=week code, z= lot number code)

Pin Name	Pin Number	Type ⁽¹⁾	Termination ⁽²⁾	Pin Description
VOUT_A	39,40	О		Half-bridge A output.
VOUT_B	35,36	0		Half-bridge B output.
VOUT_C	25,26	0		Half-bridge C output.
VOUT_D	21,22	0		Half-bridge D output.
PVDD_A	38	P		Power supply for half-bridge A.
PVDD_B	37	P		Power supply for half-bridge B.
PVDD_C	24	P		Power supply for half-bridge C.

PVDD D	23	P		Power supply for half-bridge D.
VBS A	42	P		High side supply offset voltage for half-bridge A.
VBS_B	33	P		High side supply offset voltage for half-bridge B.
VBS_C	28	P		High side supply offset voltage for half-bridge C.
VBS_D	19	P		High side supply offset voltage for half-bridge D.
GDREG	29	P		Gate driver internal regulator output. This pin must not be used to drive external devices.
	9, 10, 11, 12,			
NC	13, 14, 15, 16, 17, 18,			No Connection.
	31, 32, 48			
VDD_IO	46	P		3.3V analog power supply.
ADDR_SEL	44	DI	Pull down	I ² C address select pin. 0:
	_	_		Internal regulated 1.2V digital power supply for digital
V1P2D	2	P		core. This pin must not be used to power external devices.
VDD_PLL	47	P		Internal regulated 1.2V digital power supply for PLL.
				This pin must not be used to power external devices.
FAULT_B	8	DI	Pull up	This pin low means turning off the PWM signal path.
LRCLK	4	DI	Pull down	Serial audio data left or right clock input.
SCLK	45	DI	Pull down	Serial audio data bit clock input.
SDIN	3	DI	Pull down	Serial audio data input.
SDA	6	DIO	Pull up	I ² C serial control data input or output.
SCL	7	DI	Pull up	I ² C serial clock input.
MONITOR_0	5	DO		Monitoring signal out from processor block / I ² S output.
				Logic low to this pin reset the system. When reset pulls
RST_B	43	DI	Pull-up	low, DAP restores to its default conditions, and places
				the PWM in the hard mute state.
TEST	1	DI	Pull down	Test pin.
AGND	30	P		Power Stage Analog ground.
PGND_A	41	P		Power ground for half-bridge A.
PGND_B	34	P		Power ground for half-bridge B.
PGND_C	27	P		Power ground for half-bridge C.
PGND_D	20	P		Power ground for half-bridge D.

 $Note: (1)\ Type:\ A = analog;\ D = digital;\ P = power/ground/decoupling;\ I = input;\ O = output;\ IO = inoutput;\ O = output;\ IO = inoutput;\ IO = inoutp$

(2) All pull-ups and pull-downs are weak.

Block Diagram

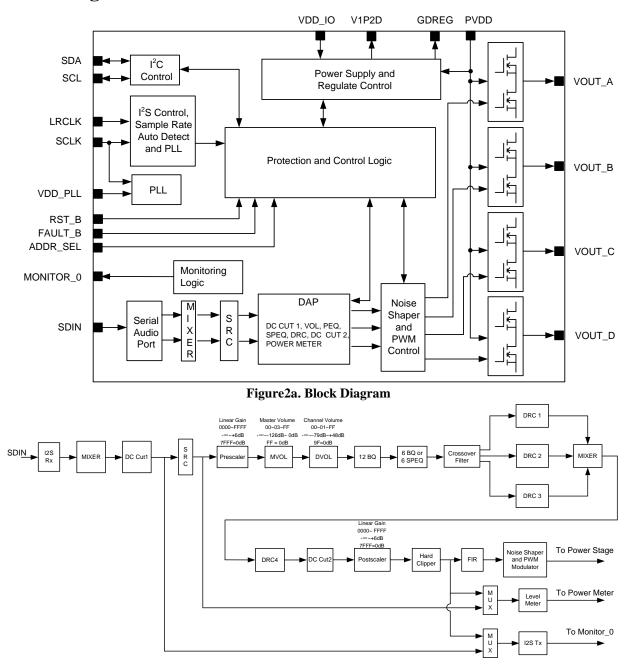


Figure2b. DAP Process Structure

Absolute Maximum Ratings (Note 1)

VDD_IO, Power Supply for Digital Interface I/O	
PVDD, Half-bridge Supply Voltage (Note 2)	
Digital Input	0.5V to (VDD_IO+0.5) V
VOUT_x	30V
GDREG	
VBS_x to VOUT_x	
Power Dissipation, PD @ TA = 25°C, TQFP7×7-48E	5.68W
Package Thermal Resistance (Note 3)	
heta	22°C/W
θ_{JC} (top)	14.5°C/W
θ _{JC} (top)	14.5°C/W
$\theta_{ ext{ JA}}$ $\theta_{ ext{ JC}}$ (top) $\theta_{ ext{ JB}}$ $\psi_{ ext{ JT}}$	14.5°C/W 7°C/W
$\theta_{ m JC}$ (top)	14.5°C/W 7°C/W 0.2°C/W
$ heta_{_{ m JC}}$ (top) $ heta_{_{ m JB}}$	14.5°C/W 7°C/W 0.2°C/W 10°C to 150°C

Recommended Operating Conditions

VDD_IO, Power Supply for Digital Interface I/O	3.3V
PVDD, Half-bridge Supply Voltage	4.5V to 28V
R _{L(BTL)} , Load Impedance(BTL)	8Ω
R _{L(PBTL)} , Load Impedance(PBTL)	4Ω
Operating Ambient Temperature Range	10°C to 85°C
Operating Junction Temperature Range	10°C to 125°C

PWM Operation Conditions

Parameter	Test Conditions	Value	Unit
	44.1kHz data rate	352.8	1 **
Output Sample Rate	32/48/96kHz data rate	384	kHz

Electrical Characteristics

 $\frac{DC\ Characteristics}{(T_A=25^{\circ}C,\ PVDD_x=18V,\ VDD_IO=3.3V,\ R_L=8\ \Omega\ ,\ BTL\ Ternary\ Mode,\ f_S=48\ kHz,\ unless\ otherwise\ specified.)}$

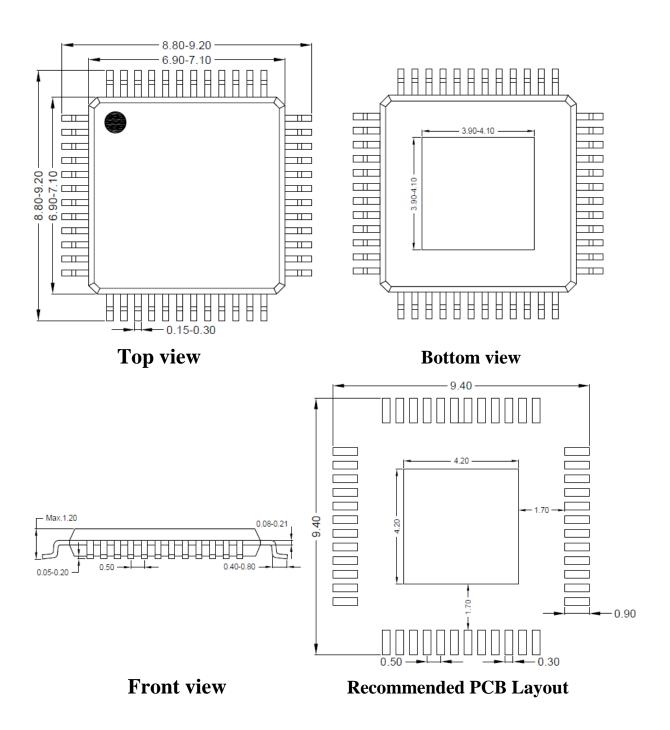
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PVDD	Half-bridge Supply Voltage		4.5	71	28	V
VDD_IO	Power Supply for Digital Interface I/O		3		3.6	V
GDREG	Gate Drive Supply		3.2		3.4	V
$ m V_{IH}$	High Level Input Voltage	TEST, SDIN, LRCLK, SDA, SCL, FAULT_B, RST_B, ADDR_SEL, SCLK	2			V
V_{IL}	Low Level Input Voltage	TEST, SDIN, LRCLK, SDA, SCL, FAULT_B, RST_B, ADDR_SEL, SCLK			0.8	V
${ m I}_{ m IL}$	Low Level Input Current	TEST, SDIN, LRCLK, SDA, SCL, FAULT_B, RST_B, ADDR_SEL, SCLK			75	μA
I_{IH}	High Level Input Current	TEST, SDIN, LRCLK, SDA, SCL, FAULT_B, RST_B, ADDR_SEL, SCLK			75	μΑ
I _{VDD_IO}	3.3V Supply Current	No Input, No Load Reset(RST_B = low, FAULT_B = high)		0.75		mA
I_{PVDD}	No Load, Half-bridge Supply Current (Without Snubber)	Normal Reset(RST_B = low, FAULT_B = high)		23.6		mA
Power MOS	 FFT	TAULI_D = lligil)				
1 ower Mos.	High Side Drain-to-source Resistance	T _i =25°C, includes		110		mΩ
$R_{\mathrm{DS}(\mathrm{ON})}$	Low Side Drain-to-source Resistance	metallization resistance		110		mΩ
Load Diagno			<u> </u>	110		11122
OLDT	Open-load detection threshold	Including speaker wires		100		
SLDT	Short-load detection threshold	Including speaker wires		1.5		
SLD1	Resistance to detect a short from OUT pin(s) to ground	including speaker wires		1.3	100	Ω
	Voltage to detect a short from output pin(s) to power supply		5.5			V
Protection	1	T	T	Т	П	1
V_{UVP}	PVDD Falling PVDD Rising			3.4		V
OVTP	Over Temperature Protection			150		°C
OVTP _{HYST}	Over Temperature Protection Hysteresis			30		°C
I _{OVC}	Over Current Protection			7.5		A

AC Characteristics (Note 3)

(T_A=25°C, C_{VBS}=22nF, Audio frequency=1kHz, f_S=48kHz, AES17 filter, Snubber=10Ω+1nF, BTL ternary mode, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Speaker A	mplifier					
		BTL Mode, PVDD=12V, R _L =8Ω, 1%THD+N		8.1		
		BTL Mode, PVDD=12V, $R_L = 8\Omega$, 10%THD+N		10.0		1
		BTL Mode, PVDD=12V, R _L =6Ω, 1%THD+N		10.1		
		BTL Mode, PVDD=12V, R _L =6Ω, 10%THD+N		12.5		
		BTL Mode, PVDD=13.2V, R_L =6 Ω , 1%THD+N		12.3		
		BTL Mode, PVDD=13.2V, R _L =6Ω,10%THD+N		15.2		
		BTL Mode, PVDD=18V, R _L =8Ω, 1%THD+N		18.2		
D	Output Power	BTL Mode, PVDD=18V, R _L =8Ω, 10%THD+N		22.4		w
Po	Output Power	BTL Mode, PVDD=18V, R _L =6Ω, 1%THD+N		22.9		W
		BTL Mode, PVDD=18V, R _L =6Ω, 10%THD+N		28.1		
	BTL Mode, PVDD=24V, R _L =8Ω, 1%THD+N		32.2			
	BTL Mode, PVDD=24V, R _L =8Ω, 10%THD+N		39.5			
		PBTL Mode, PVDD=12V, R _L =4Ω,1%THD+N		16.2		
		PBTL Mode, PVDD=12V, R _L =4Ω,10%THD+N		20.0		
		PBTL Mode, PVDD=18V, R _L =4Ω,1%THD+N		36.4		
		PBTL Mode, PVDD=24V, R _L =4Ω,1%THD+N		64.2		
		$PVDD=12V$, $R_L=8\Omega$, $P_O=1W$		0.035		
	T . 1 II	PVDD=13.2V, $R_L=6\Omega$, $P_O=1W$		0.044		
THD+N	Total Harmonic Distortion and Noise	$PVDD=18V$, $R_L=8\Omega$, $P_O=1W$		0.026		%
	Distortion and Noise	PVDD=20V, $R_L=6\Omega$, $P_O=1W$		0.033		
	PVDD=24V, $R_L=8\Omega$, $P_0=1W$		0.030			
Vn	Output Integrated Noise (rms)	PVDD=18V, R_L =8 Ω , A-weighted		73.4		μV
CT	Crosstalk	PVDD=20V, P ₀ =1W, f=1kHz		79.6		
SNR	Signal to Noise Ratio	PVDD=20V, A-weighted, f=1kHz, Maximum power at THD+N <1%,		101.3		dB

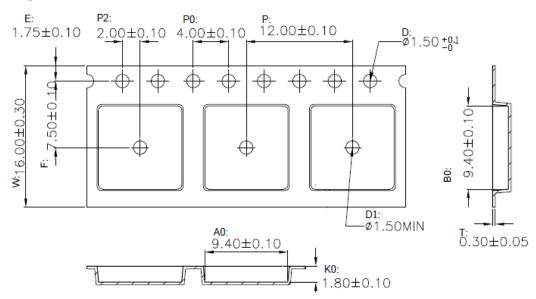
Note 1: Stresses beyond the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

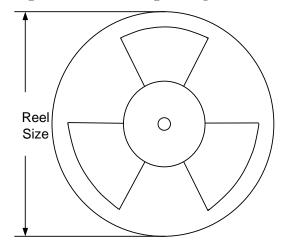

Note 2: DC voltage rating could be derated a little according to the possible switching spike on switching node if the snubber is not appropriate enough.

Note 3: θ_{JA} is measured in the natural convection at $T_A = 25$ °C on a high effective four layer thermal conductivity test board with thermal vias in accordance with JESD51-5,-7, other thermal resistance data acquired followed JESD51-8,-14.

Note 4: Typical value tested on demonstration board is guaranteed by design.

TQFP7×7-48E Package Outline Drawing


Notes: All dimension in millimeter and exclude mold flash & metal burr.


Taping & Reel Specification

1. Taping orientation

TQFP7×7-48E

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer * length(mm)	Leader * length (mm)	Qty per reel (pcs)
TQFP7×7-48E	16	12	13	400	400	2000

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
Mar.11, 2022	Revision 1.0	Production Release
		1. Delete single filter in Feature
Mar.11, 2021	Revision 0.9C	2. Delete the description of BD or Ternary mode support
		3. Delete the Block in the description of DRC
Mar.20, 2020	Revision 0.9B	Update the Feature from "I2C Serial Control Interface Operational without
		MCLK" to "3-wire I ² S Digital Audio Interface without MCLK"
Nov.8, 2019	Revision 0.9A	Change the top mark.
Oct. 15, 2019	Revision 0.9	Initial Release

IMPORTANT NOTICE

- 1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- 3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. Suitability for use. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- 5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- 6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2018 Silergy Corp.

All Rights Reserved.