SY20867F

Single-channel, Adjustable Voltage Monitor in Ultra-small Package

General Description

The SY20867F is a compact supervisory circuit that monitors voltages greater than 500mV with 0.25% threshold accuracy. The output assertion delay time can be adjusted using an external capacitor. The device features a logic high enable pin to control the power on and off the internal logic.

Operating within a voltage range of 1.7V to 6.5V, the SY20867F has a typical quiescent current of 9μ A and an open-drain output rated at 18V.

The device is available in an ultra-small DFN 1.45mm×1.0mm–6pin package and is fully specified for operation over a temperature range of T_{J} =-40°C to 125°C.

Features

- Operating Voltage Range: 1.7V to 6.5V
- Adjustable Threshold Down to 500mV
- Threshold Accuracy: 1% Over temperature
- Capacitor-adjustable Delay Time
- Low Quiescent Current: 9µA (typ.)
- External Enable Input
- Open Drain Output (Rated at 18V)
- Temperature Range: -40°C to 125°C
- RoHS Compliant and Halogen Free
- Compact Package: DFN1.45×1-6

Applications

- Notebook and Desktop Computers
- Microcontrollers, DSPs, and
- MicroprocessorsPortable and Battery-Powered Products
- Pollable and Ballery-Powere
 FPGAs and ASICs

Typical Application

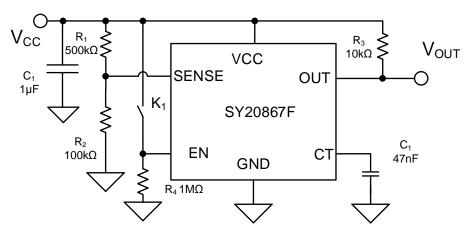
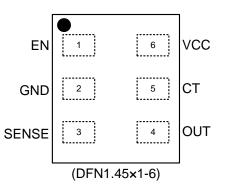


Figure1. Schematic Diagram



Ordering Information

Ordering Number	Package Type	Top Mark
SY20867FDTC	DFN1.45×1-6 RoHS Compliant and Halogen Free	V <i>xy</i> z

Device code: V x=year code, y=week code, z= lot number code

Pinout (Top View)

Pin Name	Pin NO.	I/O	Pin Description
EN	1	Ι	Active high input. Driving EN low immediately makes OUT go low, independent of V_{SENSE} . With V_{SENSE} already above V_{IT+} , drive EN high to make OUT go high after 0.2µs.
GND	2		Ground pin.
SENSE	3	Ι	This pin is connected to the voltage that is monitored with the use of an external resister. The output asserts after the capacitor-adjustable delay time when VSENSE rises above 0.5V and EN is asserted. The output de-asserts after a minimal propagation delay (16 μ s) when VSENSE falls below V _{IT+} - V _{HYS} .
OUT	4	0	OUT is an open drain output that is immediately driven low after V_{SENSE} falls below (V_{IT+} - V_{HYS}) or the EN input is low. OUT goes high after the capacitor-adjustable delay time when V_{SENSE} is greater than V_{IT+} and the EN pin is high. Open drain device can be pulled up to 18V independent of VCC; Pull-up resisters are required for these devices.
СТ	5	Ι	Capacitor-adjustable delay. The CT pin offers a user-adjustable delay time. Connecting this pin to a ground referenced capacitor sets the delay time for SENSE rising above 0.5V to OUT asserting. $t_{pd(r)}(s) = [C_{CT}(\mu F) \times 4] + 40\mu s$
VCC	6	Ι	Supply Voltage Input. Connect a 1.7V to 6.5V supply to VCC to power the device. It is good analog design practice to place a 0.1µF ceramic capacitor close to this pin.

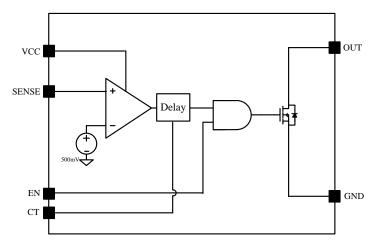


Figure2. Block Diagram

Absolute Maximum Ratings

Parameter (Note 1)	Min	Max	Unit
VCC, EN, SENSE	-0.3	7	
СТ	-0.3	VCC + 0.3	V
OUT (Open Drain)	-0.3	20	
OUT Current	-10	10	mA
Lead Temperature (Soldering, 10s)		260	
Junction Temperature, Operating	-40	125	°C
Storage Temperature	-65	150	

Thermal Information

Parameter (Note 2)	Тур	Unit
θ _{JA} Junction-to-Ambient Thermal Resistance	293.8	°C AA/
θ _{JC} Junction-to-Case Thermal Resistance	165.1	°C/W
P_D Power Dissipation $T_A = 25^{\circ}C$	0.34	W

Recommended Operating Conditions

Parameter (Note 3)	Min	Max	Unit
VCC	1.7	6.5	
CT, EN, SENSE	0	6.5	V
OUT (Open Drain)	0	18	
OUT Current	0.0003	1	mA

Electrical Characteristics

 $(1.7V < V_{CC} < 6.5V$, typical values are at $T_J = 25^{\circ}C$ and $V_{CC} = 3.3V$, unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	Vcc		1.7		6.5	V
Power on Reset Voltage	Vpor	VoL (max) =0.2V, Iout =15µA (Note 4)		0.72		V
Supply Current	laa	Vcc=3.3V, T _A =25°C, no load		9	12	μA
(into VCC pin)	Icc	V _{CC} =6.5V, T _A =25°C, no load		11	13.5	μA
Positive-going Input Threshold Voltage	V _{IT+}	Vsense rising	0.495	0.5	0.505	V
Hysteresis Voltage	V _{HYS}	V _{SENSE} falling		5		mV
SENSE Input Current	I _{SENSE}	$V_{SENSE} = 0V$ to V_{CC} (Note 5)	-15		15	nA
CT Pin Charge Current	I _{CT}		260	310	360	nA
CT Pin Comparator Threshold Voltage	V _{CT}		1.18	1.238	1.299	V
CT Pin Down Resistance	Rct			200		Ω
Low-level Input Voltage	VIL				0.4	V
High-level Input Voltage	VIH		1.4			V
Under Voltage Lockout	Vuvlo	Vcc falling, (Note 6)	1.3		1.7	V
EN Leakage		EN/#EN = V _{CC} or GND	-100		100	nA
		V _{CC} ≥ 1.2V, I _{SINK} = 90µA			0.3	V
Low-level Output Voltage	Vol	V _{CC} ≥ 2.25V, I _{SINK} = 0.5mA			0.3	V
		V _{CC} ≥ 4.5V, I _{SINK} = 1mA			0.4	V
Open-drain Output Leakage Current	I _{LKG(OD)}	Vout high impedance = 18V		20		nA

Timing Requirements

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SENSE (rising) to OUT	+	VSENSE rising, CCT = open		40		μs
Propagation Delay	tPD(r)	VSESNE rising, CCT = 0.047µF		190		ms
SENSE (falling) to OUT Propagation Delay	t _{PD(f)}	V _{SENSE} falling		16		μs
Start-up Delay		(Note 7)		50		μs
EN Pin Minimum Pulse	tw		1			μs
Duration			•			μo
EN Glitch Rejection	ten_glh			100		ns
EN to OUT Delay Time (Output Disable)	t _{d_off}	EN de-asserted to output de-asserted		200		ns
EN to VOUT Delay Time	$t_{d_{fix}}$	EN asserted to output asserted delay		200		ns

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: Θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 3: The device is not guaranteed to function outside its operating conditions

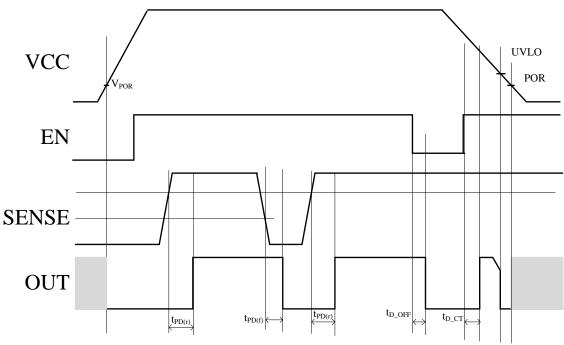
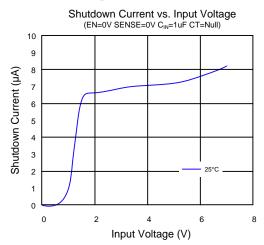
Note 4: The lowest supply voltage (VCC) at which output is active (OUT is low); $t_{r_VCC} > 15\mu s/V$. below V_{POR} , the output cannot be determined.

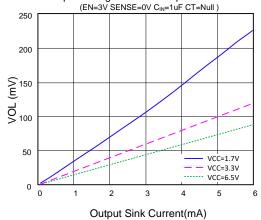
Note 5: Specified by design.

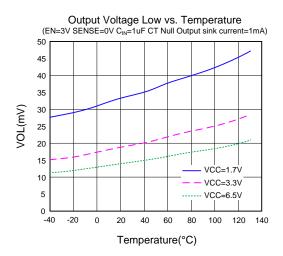
Note 6: When VCC falls below the UVLO threshold, the output de-asserts (OUT goes low). Below V_{POR} , the output cannot be determined

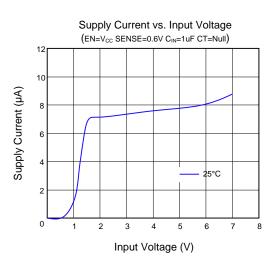
Note 7: During power on, V_{CC} must exceed 1.7 V for at least 50µs (plus propagation delay time, $t_{PD(r)}$) before output is in the correct state.

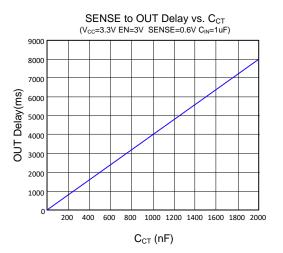
Timing Sequence:

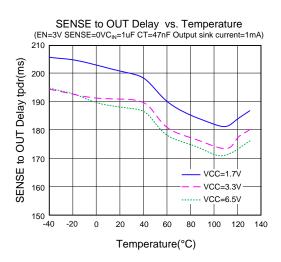



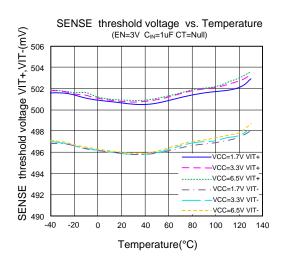

Figure 3. SY20867F Timing Sequence

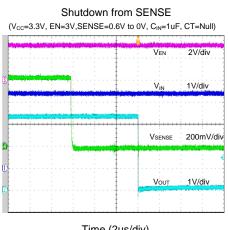


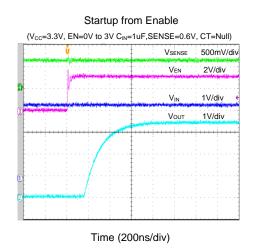

Typical Operating Characteristics




Output Voltage Low vs. Output Sink Current

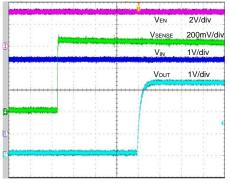


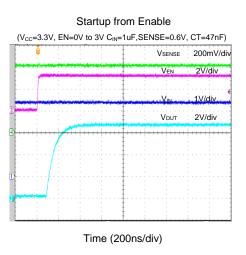



Shutdown from Enable

Vsense	500mV/di
- V ₁₆₁	2V/div
energy with the interval of the second	مېرىيىنى ھېلېيىرلىنى بەر بەر مەھىلەر يەر بار دە بې
Ven	2V/div
Vout	2V/div
	V _{in} Ven

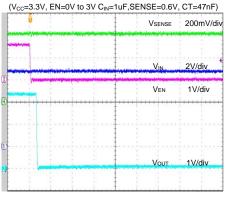

Time (100ns/div)



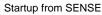


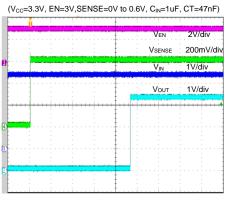
Startup from SENSE

Time (10µs/div)

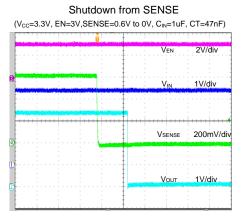


7




SY20867F

Shutdown from Enable



Time (400ns/div)

Time (40ms/div)

Time (4µs/div)

Application Information

The SY20867F is a compact supervisory circuit that monitors voltages greater than 500mV with 0.25% threshold accuracy. The output assertion delay time can be adjusted using an external capacitor. The device features a logic high enable pin to control the power on and off the internal logic.

Operating within a voltage range of 1.7V to 6.5V, the SY20867F has a typical guiescent current of 9µA and an open-drain output rated at 18V.

The device is available in an ultra-small DFN 1.45mm×1.0mm-6pin package and is fully specified for operation over a temperature range of T_J=-40°C to 125°C.

Condi	tions	Output	Status
ENABLE = high	SENSE < VIT+	OUT = low	Output not asserted
ENABLE = low	SENSE < VIT+	OUT = low	Output not asserted
ENABLE = low	SENSE > VIT+	OUT = low	Output not asserted
ENABLE = high	SENSE > VIT+	OUT = high	Output asserted after delay

Table1. SY20867F Truth Table

SENSE Input Pin

The SENSE input pin is designed to monitor system voltages greater than 0.5V. When the voltage on this pin reaches the threshold voltage (VIT+), and the ENABLE input is high, the output will be asserted after a delay set by a capacitor-adjustable timer. The output is deasserted when the voltage at the SENSE pin falls below (VIT+ - Vhys). The comparator features built-in hysteresis to ensure smooth transitions between output assertions and de-assertions. While not typically necessary, a 1nF to 10nF bypass capacitor at the SENSE input is recommended for high noise environments, in order to mitigate sensitivity to transients and layout parasitics. The desired threshold voltage can be calculated using the following equation:

 $V_{TARGET} = (1 + R_1/R_2) \times 0.5(V)$ (1)

CT Output Delay Time

The delay time can be programmed by adding an external capacitor between the CT pin and the ground. If the CT pin is floating, the device will use the internally set delay of 40µs. If required, the delay time can be extended to a value determined by the following equation:

(2)

 $tpd(r)(s) = [C_{CT}(\mu F) \times 4] + 40 \ \mu s$

DS SY20867F Rev. 1.0 © 2021 Silergy Corp.

SY20867F

The reset delay time is determined by the duration required for the on-chip, precision 310nA current source to charge an external capacitor to 1.24V. The internal current source is enabled when the voltage on the SENSE pin exceeds VIT+ and ENABLE is set high, initiating the charging of the external capacitor. Once the voltage across a capacitor reaches 1.24V, the OUT signal will be asserted. The use of a good dielectric ceramic capacitor is recommended for most applications. Note that stray capacitance around this pin could introduce errors when compared with the calculated reset delay time.

Output Pin (OUT)

In a typical application, the output is connected to a reset/enable input of the processor (DSP, CPU, FPGA, ASIC, etc.) or to the enable input of a voltage regulator.

The SY20867Ffeatures an open-drain output. A pull-up resistor must be used to ensure proper interfacing between the OUT pin and the circuit it controls. By connecting the pull-up resistor to an adequate voltage rail, OUT can be connected to other devices using different interface voltage levels. The outputs can be pulled up to 18V independent of the supply voltage (VCC). To ensure proper voltage levels, some thought should be given to choosing the correct pull-up resistor value. The ability to sink current is determined by the supply voltage; as an example, if VCC = 5V and the desired output pull-up rails is 18 V, then to obtain a sink current of 1 mA or less (as mentioned in the Electrical Characteristics section), the pull-up resistor value should be greater than 18 k Ω . Multiple devices can be used to monitor different voltage levels in a system and their outputs can be OR-wired, to create a single logic control signal.

Enable Function

An external logic signal from processors can control the enable input of the SY20867F, turning the output on or off. The SY20867F features an active-high enable input (ENABLE). When ENABLE is driven high, the OUT pin will be in high-impedance state. The threshold levels for ENABLE are 0.4V (maximum) when low, and 1.4V (minimum) when high, allowing it to be driven by a system supply of 1.5V or higher.

Active high input. Driving ENABLE low immediately makes OUT go low-impedance. With VSENSE greater than VIT+, driving ENABLE high causes OUT to go highimpedance after 0.2µs.

9

SY20867F

10

PCB Layout Guide

For best performance of the SY20867F, the following guidelines must be strictly followed:

1. Place the VCC decoupling capacitor close to the device.

2. Input and output capacitors should be placed closed to the IC and connected to ground plane to reduce noise coupling.

3. SENSE pin is a sensitive pin. Keep SENSE trace far away from the trace or plane that has large dv/dt. The divider resistor should be placed as close as possible to the SENSE pin.

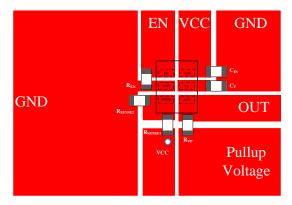
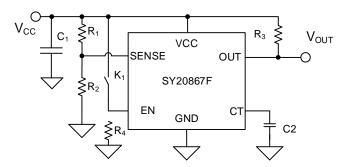
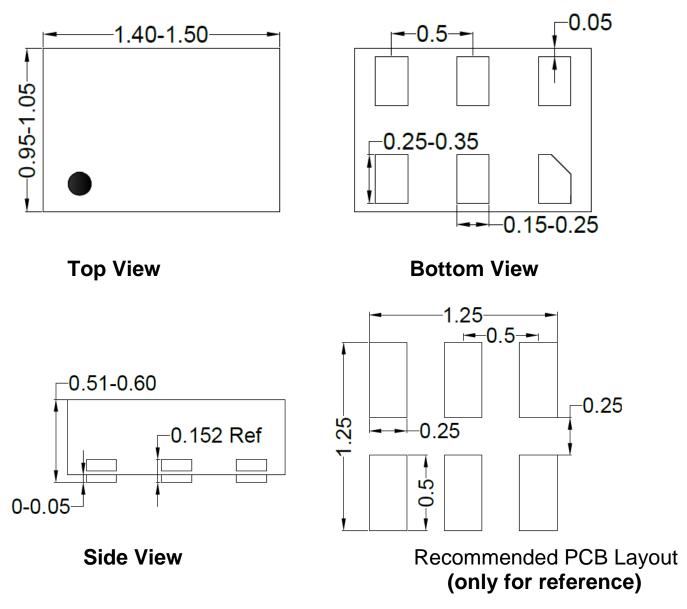



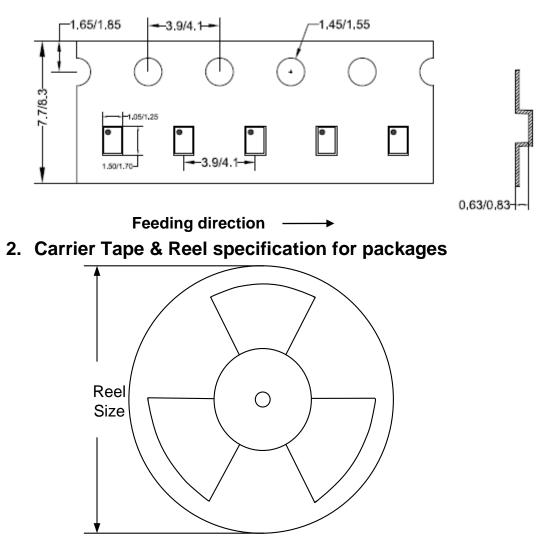
Figure 4. PCB Layout Suggestion

Schematic



BOM List

Designator	Description	Part Number	Manufacturer
C1	1µF/50V, 0603, X5R	GRM188R61H105K	Murata
C2	47nF/25V,0603,X5R	GRM188R71H473K	Murata
R1	500kΩ, 0603		
R2	100kΩ, 0603		
R3	10KΩ, 0603		
R4	1MΩ, 0603		


Notes: All dimension in millimeter and exclude mold flash & metal burr.

12

Taping & Reel Specification

1. Taping orientation

Package	Tape width	Pocket	Reel size	Trailer	Leader length	Qty per
types	(mm)	pitch(mm)	(Inch)	length(mm)	(mm)	reel
DFN1.45×1	8	4	7"	400	160	3000

3. Others: NA

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
Jan.10, 2024	Revision 1.0	Language improvements for clarity.
Nov.01, 2021	Revision 0.9A	Add "Positive-going Input Threshold Voltage" in EC table (page 4)
June 19, 2020	Revision 0.9	Initial Release

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2020 Silergy Corp.

All Rights Reserved.