

General Description

The SY20809L is an ultra-low R_{DS(ON)} power distribution switch. It has a resistor programmable current limit to protect the power source from overcurrent and short-circuit conditions.

The device incorporates overtemperature protection and a reverse blocking function to ensure reliable operation.

Its low quiescent and very low shutdown currents make this part attractive for battery powered applications.

The SY20809L is available in a TSOT23-5 package.

Features

- Input Voltage: 2.4V to 6V
- 2.5A Load Current Capability
- Quiescent Current I_Q 38µA (typ.)
- Shutdown Current I_{SHDN} 0.2µA (typ.)
- Programmable Current Limit
- Overtemperature Protection
- Reverse Blocking (No Body Diode)
- OUT Can be Forced Higher than IN at Shutdown
- Compact Package: TSOT23-5
- RoHS Compliant and Halogen Free

Applications

- Battery Operated Products
- USB Dongles
- MiniPCI Accessories
- USB Chargers
- Public Place Multi-USB Chargers

Typical Application Circuit

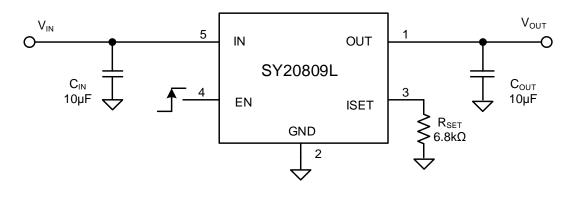
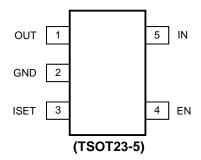


Figure 1. Schematic Diagram



Ordering Information

Ordering Number		Package Type	Top Mark	
SY20809L/	SY20809LACC		Vm <i>xyz</i>	

Device code: Vm x=year code, y=week code, z= lot number code

Pinout (Top View)

Pin Name	Pin Number	Pin Description
OUT	1	Output pin, decoupled with a 10µF capacitor to GND.
GND	2	Ground pin.
ISET	3	Current limit programming pin. Connect a resistor R_{SET} from this pin to ground to program the current limit: I_{LIM} (A)=6800/ R_{SET} (Ω)
EN	4	ON/OFF control. Pull high to enable operation. Do not leave it floating.
IN	5	Input pin, decouple with a 10µF capacitor to GND.

Block Diagram

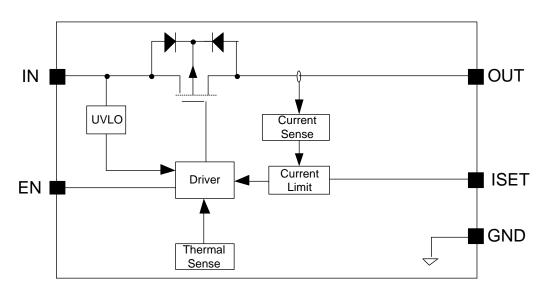


Figure 2. Block Diagram

Absolute Maximum Ratings

Parameter (Note 1)	Min	Max	Unit
IN, OUT, EN, ISET	-0.3	7	V
Lead Temperature (Soldering, 10s)		260	
Junction Temperature, Operating	-40	150	°C
Storage Temperature	-65	150	

Thermal Information

Parameter (Note 2)	Тур	Unit
θ _{JA} Junction-to-Ambient Thermal Resistance	68.5	°C/W
θ _{JC} Junction-to-Case Thermal Resistance	10.9	C/vv
P_D Power Dissipation $T_A = 25^{\circ}C$	1.46	W

Recommended Operating Conditions

Parameter (Note 3)	Min	Max	Unit
IN	2.4	6	
OUT, ISET	0	6	V
EN	0	VIN	
Junction Temperature, Operating	-40	125	ŝ
Ambient Temperature	-40	85	

Electrical Characteristics

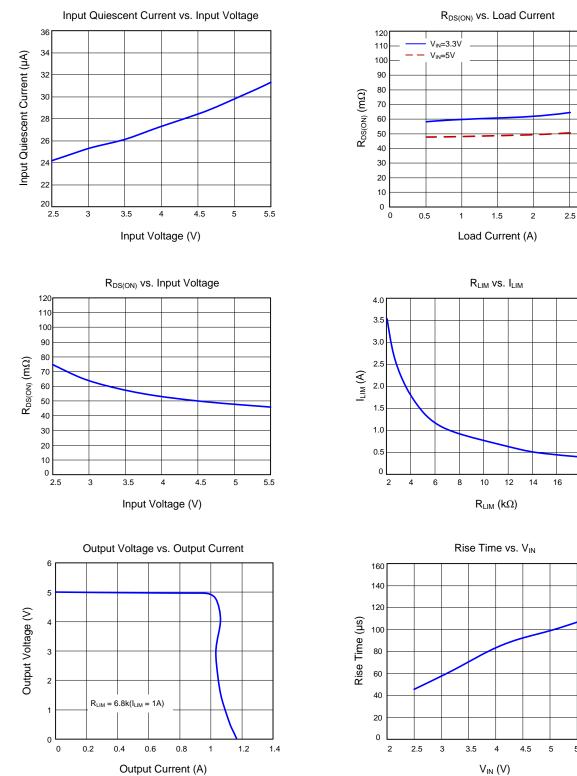
(1/ = E)/. C = 10		unloss otherwise	oposified)
$(V_{IN} = 5V, C_{OUT} = 10)$	μ F, IA = 25°C,	unless otherwise	specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	VIN		2.4		6	V
Shutdown Input Current	ISHDN	Open load, IC disabled		0.2	1	μA
Quiescent Supply Current	la	Open load, IC enabled		38		μA
FET RON	RDS(ON)			80		mΩ
EN Rising Threshold	V _{EN(H)}		2			V
EN Falling Threshold	V _{EN(L)}				0.8	V
EN Leakage Current	IEN	V _{EN} =5.0V			1	μA
IN UVLO Threshold	VIN_UVLO				2.3	V
IN UVLO Hysteresis	VIN_HYS			0.1		V
Over Current Limit	ILIM	R _{SET} =6.8kΩ	0.75	1	1.25	Α
Programmable Current Limit Range	RANGE		0.4		2.5	Α
Turn-On Time	ton	R _L =10Ω, C _{OUT} =1μF		130		μs
Turn-Off Time	t OFF	R _L =10Ω, C _{OUT} =1μF		20		μs
Thermal Shutdown Temperature	tsp			150		°C
Thermal Shutdown Hysteresis	tsd_hys			20		°C

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a Silergy test board. Pin 2 of TSOT23-5 package is the case position for θ_{JC} measurement.

Note 3: The device is not guaranteed to function outside its operating conditions.


SY20809L

3

18 20


5.5 6

Typical Performance Characteristics

SY20809L

Time(2ms/div)

Application Information

The SY20809L is a current limited P-channel MOSFET power switch with overcurrent and overtemperature protections. There is no body diode between the drain and the source of the MOSFET. The SY20808F3 prevents the current flow from the output to the input when the chip is disabled.

Overcurrent Protection:

When the overcurrent condition is detected, the gate of the pass MOSFET is regulated to achieve a constant output current. If the overcurrent condition persists and result in a junction temperature over 150°C, the device shuts down. When the junction temperature drops below 130°C, the part will restart.

Supply Filter Capacitor:

To prevent an input voltage drop during hot-plug events, a 10µF ceramic capacitor from VIN to GND is strongly recommended. Higher capacitor values can further reduce input voltage drop.

Without an input capacitor, an output short can cause ringing on the input, which could destroy the internal circuitry when the input transient exceeds the absolute maximum supply voltage, even for a short duration.

Current Limiting Setting:

The current limit can be programmed to protect the power source from overcurrent and short-circuit conditions. Connect a resistor R_{SET} from the ISET pin to GND to program the current limit:

 $I_{LIM}(A) = 6800 / R_{SET}(\Omega)$

The minimum current limit is 0.4A. A current limit beyond 2.5A is not recommended.

Maximum Input Voltage Consideration:

For any application, the input voltage for SY20809L should not be allowed to exceed the maximum recommended value (6V).

Below is a typical application circuit for the SY20809L. The front stage is a non-synchronous boost stage, and the input power supply can be a battery or an adapter.

Some adapters may have poor output voltage tolerance or significant output voltage overshoot if the adapter is hotplugged directly. A voltage overshoot higher than the maximum operating value (6V) will significantly reduce the reliability of the SY20809L and may lead to electrical overstress and failure of the device.

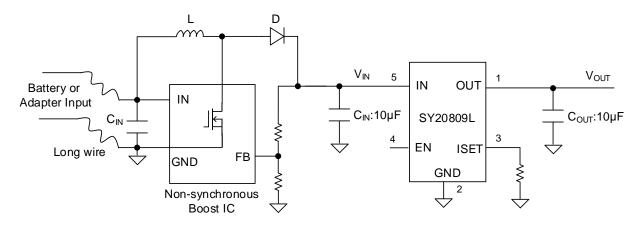


Figure 3. USB Host Application

PCB Layout Guide:

For the best performance of the SY20809, the following guidelines must be followed:

- 1. Keep all power traces as short and wide as possible, and use at least 2 ounce copper for all power traces.
- 2. Place a ground plane under all circuitry to lower resistance and inductance and improve DC and transient performance.
- 3. Place the output capacitors as close to the connectors as possible to lower the impedance (mainly inductance) between the port and the capacitor and improve transient performance.
- 4. Input and output capacitors should be placed close to the device and connected to the ground plane to reduce noise coupling.
- 5. Place the ceramic bypass capacitors as close as possible to the IN and OUT pins.

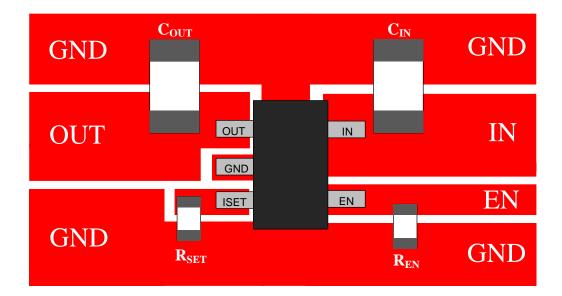
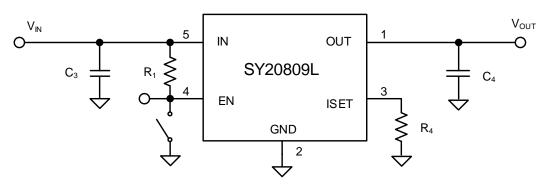
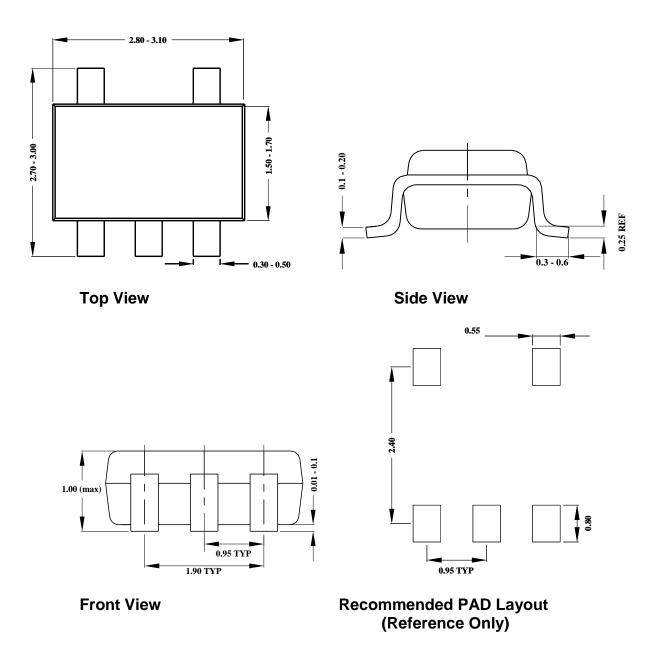



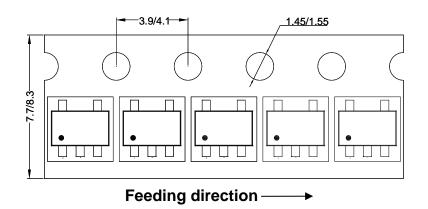
Figure 4. PCB Layout Suggestion

Schematic

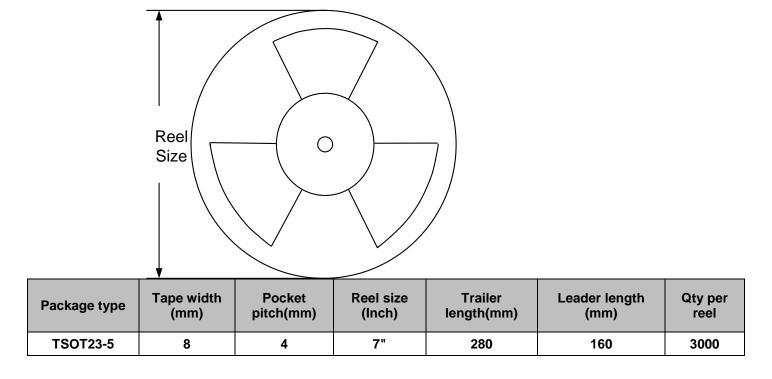


BOM List

Reference Designator	Description	Part Number	Manufacturer
C ₃	10µF/25V, 0805, X5R	C2012X5R1E106K	TDK
C_4	10µF/25V, 0805, X5R	C2012X5R1E106K	TDK
R₁	1MΩ, 0603		
	6.8kΩ, 0603		



Note: All dimensions are in millimeters and exclude mold flash and metal burr.



Taping & Reel Specification

1. TSOT23-5 Taping Orientation

2. Carrier Tape & Reel Specification for Packages

3. Others: NA

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change
Jan.05, 2024	Revision 1.0	Language improvements for clarity.

SY20809L

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. Suitability for use. Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2024 Silergy Corp.

All Rights Reserved.