

High Efficiency 6A, 1.5MHz, I²C Programmable Inductor Built-in Synchronous Step Down Regulator

General Description

The SY20616D is a high efficiency 1.5MHz, 6A synchronous step-down DC/DC regulator which integrates an inductor and a control IC in one tiny package (4.0mm×3.0mm, H=2.0mm). It can operate over a wide input voltage range from 2.7V to 5.5V and integrates main switch and synchronous switch with very low $R_{\rm DS\,(ON)}$ to minimize the conduction loss. The output voltage can be programmed from 0.6V to 1.5V through the I^2C interface.

Applications

- Smart-phone
- Web-tablets

Features

- 2.7V to 5.5V Input Voltage Range
- Pseudo-constant Frequency: 1.5MHz
- Internal Soft-start Limits the Inrush Current
- Typical 95µA Quiescent Current
- Programmable Output Voltage: 0.6V to 1.5V in 10mV Steps
- 6A Continuous Load Current Capability
- Remote Voltage Sense Function to Provide Excellent Output Accuracy
- 1 MHz Fast Mode plus I²C Bus Interface
- Hic-cup Mode Protection for Hard Short Condition
- Power Good Indicator
- RoHS Compliant and Halogen Free
- Compact Package: MQFN3×4-16

Typical Applications

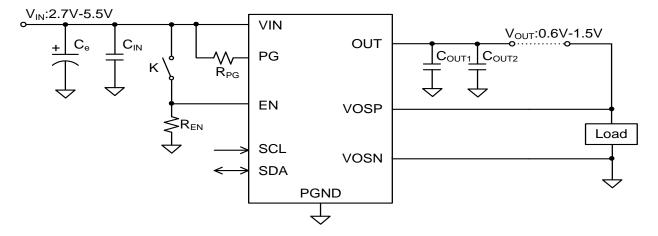
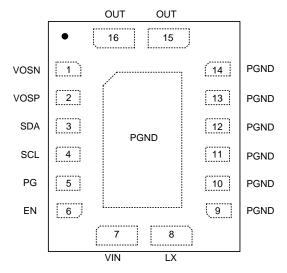


Figure 1. Schematic Diagram



Ordering Information

Ordering Part Number	Package type	Top Mark
SY20616DABM	MQFN3×4-16 RoHS Compliant and Halogen Free	GWLxyz

x=year code, y=week code, z= lot number code

Pinout (top view)

Pin Name	Pin Number	Pin Description	
VOSN	1	Negative remote sense pin. Connect to GND of the load side.	
VOSP	2	Positive remote sense pin. Connect to VOUT of the load side.	
SDA	3	I2C interface Bi-directional data line.	
SCL	4	I2C interface clock line.	
PG	5	Power good indicator. When the output voltage exceeds 90% of regulation point, it becomes open drain. Low otherwise.	
EN	6	Enable control pin. Pull high to turn on. Do not leave it floating. When EN pin is low, the register settings will be set to the default values.	
VIN	7	Power input pins. Decouple this pin to PGND with at least one piece 22µF ceramic capacitor.	
LX	8	Inductor pins. Leave it floating.	
PGND	9-14	Power ground pin. The largest central pad is also power ground.	
OUT	15,16	Output pin. Decouple this pin to PGND with at least two pieces 22µF ceramic capacitors.	

Block Diagram

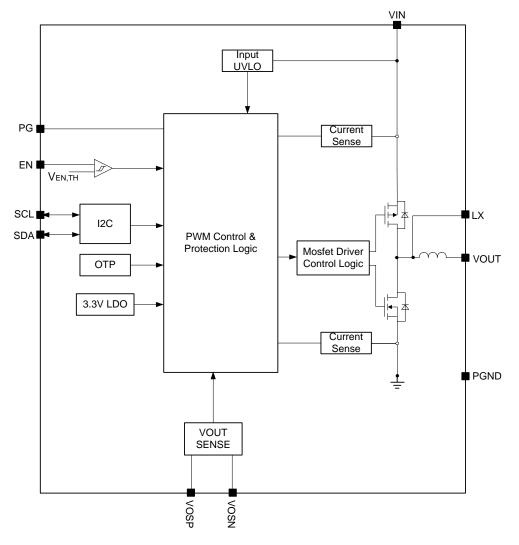


Figure 2. Block Diagram

Absolute Maximum Ratings (1)	Min	Max	Unit
IN	-0.3	6	V
EN, PG, SCL, SDA, VOSP, VOSN	-0.3	IN + 0.6	
Junction Temperature, Operating	-40	125	
Lead Temperature (Soldering, 10sec.)		260	°C
Storage Temperature	-40	125	

Thermal Information (2)	Min	Max	Unit
θ_{JA} Junction-to-ambient Thermal Resistance		26.4	°C/W
P _D Power Dissipation T _A =25°C	3.8	W	

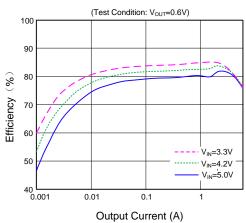
Recommended Operating Conditions (3)	Min	Max	Unit
IN	2.7	5.5	3.7
Output Voltage	0.6	1.5	V
Output Current	0	6	A

Electrical Characteristics

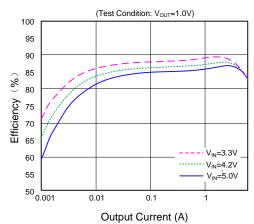
Electrical Characteristics V _{IN} = 5V, V _{OUT} = 1V, C _{OUT} = 2*22μF, T _A = 25°C, unless otherwise specified							
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input Voltage Range	V _{IN}		2.7		5.5	V	
V _{IN} UVLO	$V_{\rm UVLO}$	V _{IN} Rising		2.55	2.7	V	
V _{IN} UVLO Hysteresis	V_{UVHYST}			150		mV	
Quiescent Current	$ m I_Q$	I _{OUT} =0, EN=1, Buck_ENx=1,FB=105%*V _{REF}		95		μA	
Shutdown Current	$I_{SHDN_H/W}$	EN=0		0.5	1	۸	
Shutdown Current	I _{SHDN_S/W}	EN=V _{IN} , Buck_ENx=0		40		μΑ	
EN Input Voltage High	$V_{\mathrm{EN,H}}$		1.1			V	
EN Input Voltage Low	$ m V_{EN,L}$				0.4	V	
SDA, SCL		·					
Logic High	$V_{\rm I2C,H}$		1.5			V	
Logic Low	V _{I2C,L}				0.4	V	
Output Voltage Set-Point	V_{SET}	Forced PWM, V _{OUT} =VSEL0, default value	-1		+1	%	
Output Current Limit	$I_{OUT,LIMT}$		6			A	
Soft-start Time (Note 4)	t_{SS}	10%-90% VOUT		300		μs	
Min on time (Note 4)	ton, min			65		ns	
Switching Frequency	\mathbf{f}_{sw}			1.5		MHz	
Thermal Shutdown Temperature	T_{SD}			150		°C	
Thermal Shutdown Hysteresis	T_{HYS}			15		°C	
Output Discharge Resistance	$R_{ m DIS}$			120		Ω	
VOSN Compensation Range	$V_{ m VOSN}$		120			mV	
Input OVP Threshold		Rising threshold		6.2		V	
Input OVP Threshold	V_{OVP}	Falling threshold	5.65	5.85		V	
Input OVP Blanking Time	$T_{ m Blanking}$			10		μs	

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

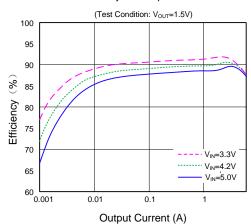
Note 2: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}\text{C}$ on a four-layer 2-oz $80 \times 80 \text{mm}$ (L×W) Silergy Evaluation Board.

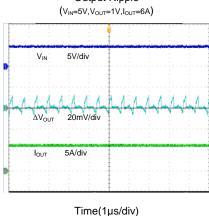

Note 3: The device is not guaranteed to function outside its operating conditions.

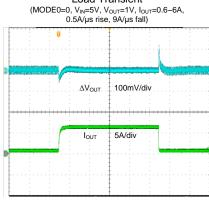
Note 4: The values are guaranteed by design.

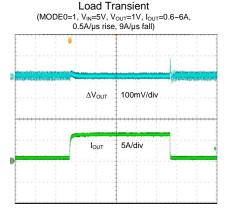


Typical Performance Characteristics

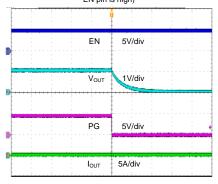

Efficiency vs. Output Current


Efficiency vs. Output Current

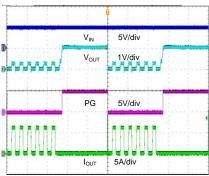

Efficiency vs. Output Current


Output Ripple

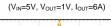
Load Transient

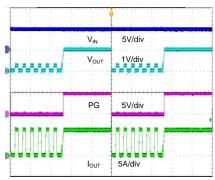

Time(100µs/div)

Time(100µs/div)


$\begin{array}{c} \textbf{Shutdown From BUCK_EN} \\ \textbf{(Output Discharge=1, V}_{IN} = 5\text{V, V}_{OUT} = 1\text{V, I}_{OUT} = 0\text{A,} \\ \textbf{EN pin is high)} \end{array}$

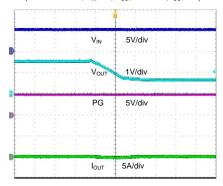
Time(10ms/div)

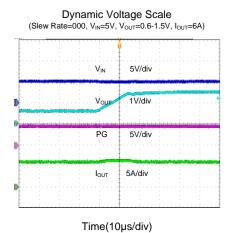

Short Circuit Protection

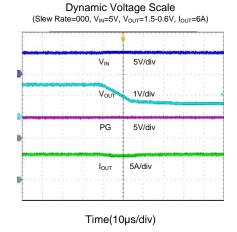

 $(V_{IN}\!\!=\!\!5V,\,V_{OUT}\!\!=\!\!1V,\,I_{OUT}\!\!=\!\!0A)$

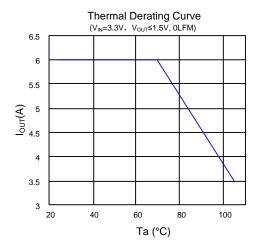
Time(4ms/div)

Short Circuit Protection


Time(4ms/div)


Time(10µs/div)

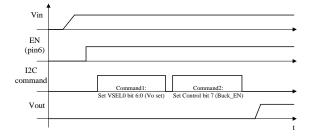




Time(10µs/div)

Note:

- 1) TA: Air temperature, 0.5 inch above the IC.
- 2) Based on a Two-layer Silergy evaluation board in the natural convection.
- 3) The IC case temperature is not beyond 115° C under this TD curve.
- 4) For customer's specific application, the recommended the IC case temperature limitation is 115°C.


Enabling Function

The EN pin controls the SY20616D's start-up. EN pin low to high transition starts the power-up sequencer. If EN pin is low, the DC/DC converter will be turned off, and all I²C registers will be reset to default values, and the I²C command will not be supported at this state.

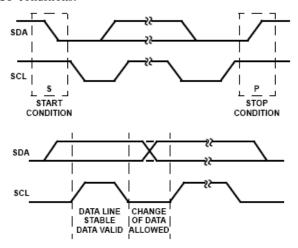
When the EN pin is HIGH, the SY20616D's output can be controlled by the I²C register BUCK_EN bit.

Hardware and Software Enable control table.

Pin	I ² C register	OUTPUT
EN	BUCK_EN	OUTPUT
0	X	OFF
1	0	OFF
1	1	ON

Input Over Voltage Protection Function

When the $V_{\rm IN}$ exceeds over voltage protection threshold, SY20616D will stop switching to protect the circuitry. An internal 10us blanking time filter helps to prevent the circuit from shutting down due to noise spikes.

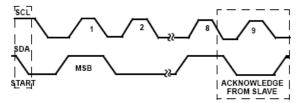

I²C Interface

The SY20616D features an I²C interface that allows the HOST processor to control the output voltage to achieve the DVS function. The I²C interface supports clock speeds up to 1.0MHz and uses standard I²C commands. The SY20616D always operates as a slave device, and is addressed using a 7-bit slave address followed by an 8-bit, which indicates whether the transaction is a read-operation or a write-operation.

START and STOP Conditions

The SY20616D is controlled via an I²C compatible interface. The START condition is a HIGH to LOW transition on the SDA line while the SCL is HIGH. The STOP condition is a LOW to HIGH transition on the SDA line while the SCL is HIGH. A STOP condition must be sent before each START

condition. The I²C master always generates the START and STOP conditions.

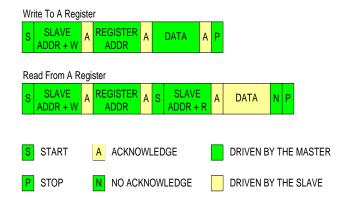


Data Validity

The data on the SDA line must be stable during the HIGH period of the SCL, unless generating a START or STOP condition. The HIGH or LOW state of the data line can only be changed when the clock signal on the SCL line is LOW.

Acknowledge

Each address and data transmission uses 9-clock pulses. The ninth pulse is the acknowledge bit (ACK). After the START condition, the master sends 7-slave address bits and an R/W bit during the next 8-clock pulses. During the ninth clock pulse, the device that recognizes its own address holds the data line low to acknowledge. The acknowledge bit is also used by both the master and the slave to acknowledge receipt of register addresses and data.



Data Transactions

All transactions start with a control byte sent from the I²C master device. The control byte begins with a START condition, followed by 7-bit of slave address (1100000x) for the SY20616D (this address can be changed if necessary), and followed by the 8th bit, R/W bit. The R/W bit is 0 for a write or 1 for a read. If any slave devices on the I²C bus recognize their address, they will be acknowledged by pulling the SDA line low for the last clock cycle in the control byte. If no

slaves exist at that address or are not ready to communicate, the data line will be 1, indicating a Not Acknowledge condition. Once the control byte is sent, and the SY20616D acknowledges it, the 2nd byte sent by the master must be a register address byte. The register address byte tells the SY20616D which register the master will write or read. The SY20616D will response once it receives a register.

Register Settings:

1. VSEL0 (0×00)

Register Name				VSEL0
Address				0×00
Field	Bit	R/W	Default	Description
Reserved	7	R/W	0	Always reads back 0.
NSEL	6:0	R/W	0101000 (V _{OUT} =1.00V)	0000000 = 0.60V
				0011111= 0.91V
				1011010=1.50V
				1111111=1.50V

2. Control Register (0×01)

Register Name				Control Register
Address				0×01
Field	Bit	R/W	Default	Description
BUCK_EN	7	R/W	0	Software buck enable. When EN pin is low, the regulator is off. When EN pin is high, Buck EN bit must be written as 1 to enable SY20616D.
MODE0	6	R/W	0	0=Allow auto-PFM mode during light load. 1=Forced PWM mode
Output Discharge	5	R/W	0	0 = discharge resistor is disabled.1 = discharge resistor is enabled.
Slew Rate	4:2	R/W	000=10mV/0.15μs	Set the slew rate for positive voltage transitions. $000 = 10 mV/0.15 \mu s$ $001 = 10 mV/0.3 \mu s$ $010 = 10 mV/0.6 \mu s$

				$011 = 10 \text{mV} / 1.2 \mu \text{s}$
				$100=10mV/2.4\mu s$
				$101=10mV/4.8\mu s$
				$110 = 10 \text{mV}/9.6 \mu \text{s}$
				$111 = 10 \text{mV}/19.2 \mu \text{s}$
RESET	1	R/W	0	Setting to 1 resets all registers to default values.
Reserved	0	R/W	0	Always reads back 0.

3. Power Good Register (0×02)

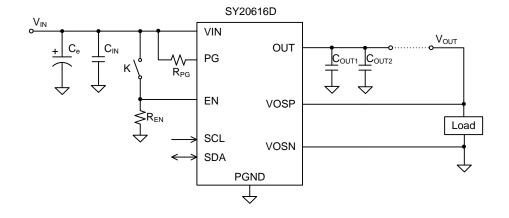
Register Name				PGOOD Register
Address				0×02
Field	Bit	R/W	Default	Description
PGOOD	7	R	0	1: Buck is enabled and soft-start is completed.
Reserved	6:0	R	000 0000	Always reads back 0.

Application Information

Because of the high integration in the SY20616B, the application circuit based on this regulator is rather simple. Only the input capacitor C_{IN} and the output capacitor C_{OUT} need to be selected for the targeted applications specifications. And X7R or better grade ceramic capacitors with low ESR are recommended for reliable operation.

External capacitor recommendation

	Capacitance	Vendor	PN
C _{IN}	22µF	muRata	GRM31CC71C226 ME11
Cout	2×22μF	muRata	GRM31CC71C226 ME11


Layout Design

To achieve a higher efficiency and better noise immunity, following components should be placed close to the IC: C_{IN} , C_{OUT} .

- 1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. Reasonable vias are suggested to be placed underneath the ground pad to enhance the soldering quality and thermal performance.
- 2) The decoupling capacitor of VIN/VOUT and GND must be placed close enough to the pins. The loop area formed by the capacitors and GND must be minimized.
- 3) The PCB copper area associated with LX pin must be minimized to improve the noise immunity.

Typical Application Circuit

BOM List

Reference Designator	Description	Part Number	Manufacturer
C_{e}	470μF/16V Electrolytic Capacitor		
C_{IN}	22μF/16V/X7S, 1206	GRM31CC71C226ME11	muRata
C_{OUT1}, C_{OUT2}	22μF/16V/X7S, 1206	GRM31CC71C226ME11	muRata
R_{PG}	1MΩ, 1%, 0603		
R_{EN}	1MΩ, 1%, 0603		

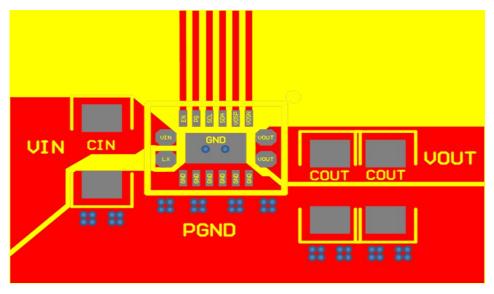
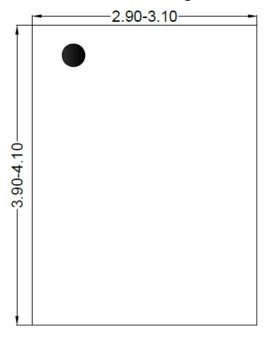
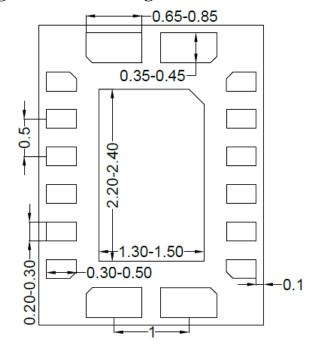
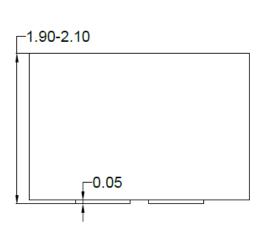
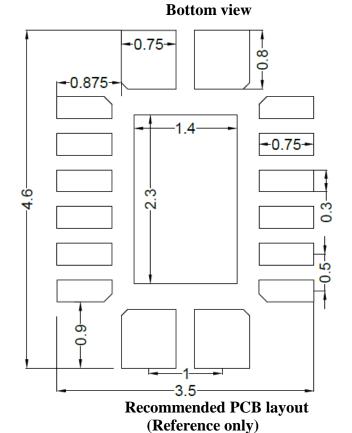




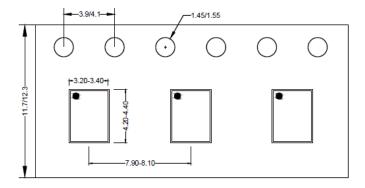
Figure 3.PCB Layout Suggestion

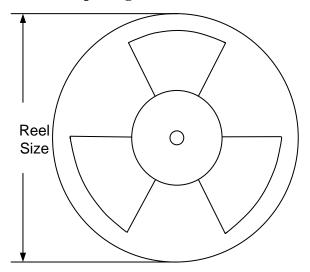


MQFN3×4-16 Package Outline Drawing



Top view


Side view


Taping & Reel Specification

1. Taping orientation MQFN3×4

Feeding direction →

2. Carrier Tape & Reel specification for packages

Package types	Tape width (mm)	Pocket pitch(mm)	Reel size (Inch)	Trailer length(mm)	Leader length (mm)	Qty per reel
MQFN3×4	12	8	13"	400	400	2500

3. Others: NA

IMPORTANT NOTICE

- 1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.
- 2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.
- 3. **Limited warranty and liability.** Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.
- 4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
- 5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.
- 6. **No offer to sell or license**. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2020 Silergy Corp. All Rights Reserved.