SY24105B

Analog Class-D Audio IC

General Description

The SY24105B is a Class-D audio power amplifier with analog input and high-power efficiency for driving bridged-tied mono speaker with up to $60W/4\Omega$. The high efficiency of the SY24105B eliminates the need for an external heat sink when playing music.

The SY24105B advanced oscillator/PLL circuit employs a multiple switching frequency option to avoid AM interference, this is achieved together with an option of Master and Slave synchronization, making it possible to synchronize multiple devices.

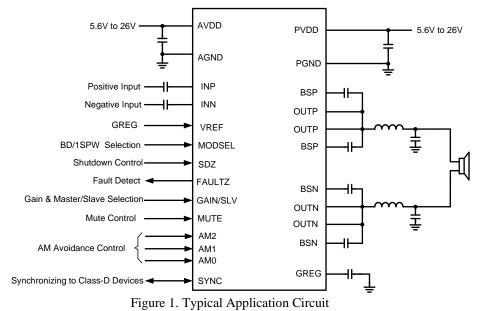
The SY24105B is fully protected against faults including short circuit, over temperature, DC error, under voltage and over voltage. The short circuit, over temperature and DC error protection includes an auto-recovery feature. The under voltage and over voltage protection with hysteresis can be self-cleared.

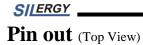
Ordering Information

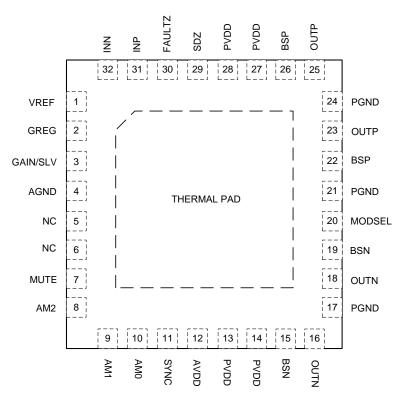
SY24105 $\square(\square \square)\square$ \square Ten Pac

└ Temperature Code ─ Package Code ─ Optional Spec Code

Ordering Number	Package type	Note
SY24105BQEC	QFN5×5-32	


Typical Application


Features


- 60W into a 4 Ω Load @ 10% THD+N from a 24V Supply
- Wide Supply Voltage Range from 5.6V to 26 V
- Differential and Single-ended Inputs
- Internal Feedback Control with High PSRR
- High Efficient Class-D Operation Eliminates Need for Heat Sinks
- AM Avoidance
- Master/Slave Mode Synchronization
- Four Fixed-gain Controlled: 20dB, 26dB, 32dB and 36dB
- Selectable BD Mode and 1SPW Mode Modulation
- Integrated Protection Circuits Including Over Voltage, Under Voltage, Over Temperature, DC Error, and Short Circuit
- Comprehensive Click and Pop Suppression
- Space-Saving Surface Mount 32-Pin QFN 5mmx5mm Package

Applications

- Powered Speakers
- Music Instruments
- Boom Box
- Consumer Audio Applications

(QFN5×5-32)

Top Mark: ENA*xyz* (device code: ENA, *x=year code*, *y=week code*, *z= lot number code*)

Name	No.	Description		
VREF	1	Internal reference pin. Connect to GREG directly.		
GREG	2	Gate drive supply. Nominal voltage is 3.4V.		
GAIN/SLV	3	Gain & Master/Slave mode selection depending on voltage divider from GREG to GND.		
AGND	4	Analog Ground.		
NC	5	Not Connected.		
NC	6	Not Connected.		
MUTE	7	Mute pin (high=mute, low=unmute), TTL logic levels with compliance to AVDD.		
AM2	8	AM avoidance frequency selection.		
AM1	9	AM avoidance frequency selection.		
AM0	10	AM avoidance frequency selection.		
SYNC	11	Clock input/output for synchronizing other Class-D devices. Determined by Gain/SLV pin.		
AVDD	12	Analog power supply. Not internally connected to PVDD.		
PVDD	13,14,27, 28	Power supply.		
BSN	15,19	Bootstrap for negative high-side FET.		
OUTN	16,18	H-bridge negative output.		
PGND	17,21,24	Power Ground.		
MODSEL	20	Mode selection (low=BD, high=1SPW), TTL logic levels with compliance to AVDD		
BSP	22,26	Bootstrap for positive high-side FET.		
OUTP	23,25	H-bridge positive output.		

SY24105B

SDZ	29	Shutdown pin (low = enter shutdown, high = exit shutdown). TTL logic levels with compliance to AVDD.
FAULTZ	FAULTZ30Open drain output used to display general fault, including SCP, OTP, DCP status (low=fault, high=normal).	
INP	31	Positive audio input. Biased at 1.7V.
INN	32	Negative audio input. Biased at 1.7V
Thermal Pad	33	Connect to GND for best system performance.

Block Diagram

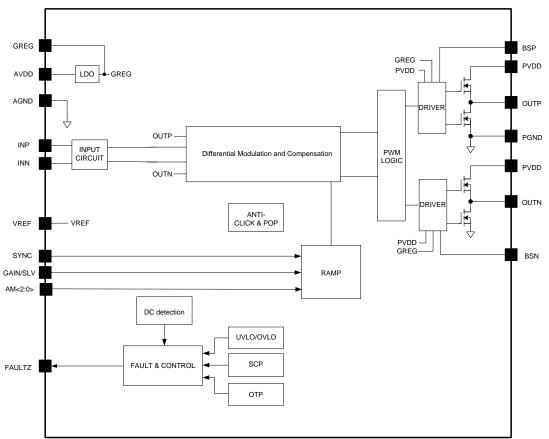


Figure 2. Block Diagram

Absolute Maximum Ratings (Note 1)

AVDD, PVDD	0.3V to 30V
INP, INN	0.3V to 3.6V
MODSEL, SDZ, MUTE, AM2, AM1, AM0	0.3V to PVDD + 0.3V
VREF, GAIN/SLV, SYNC	0.3V to GREG+0.3V
Minimum Load Resistance Output Configuration	2.5Ω
Junction Temperature (T _J)	
Storage Temperature	-40° C to $+125^{\circ}$ C
Package Thermal Resistance (Note 2)	
$ heta_{ ext{JA}}$	22°C/W
θ _{JC}	8°C/W

Recommended Operating Conditions

Supply Voltage Range	5 6V to 26V
Junction Temperature Range	
Ambient Temperature Range	

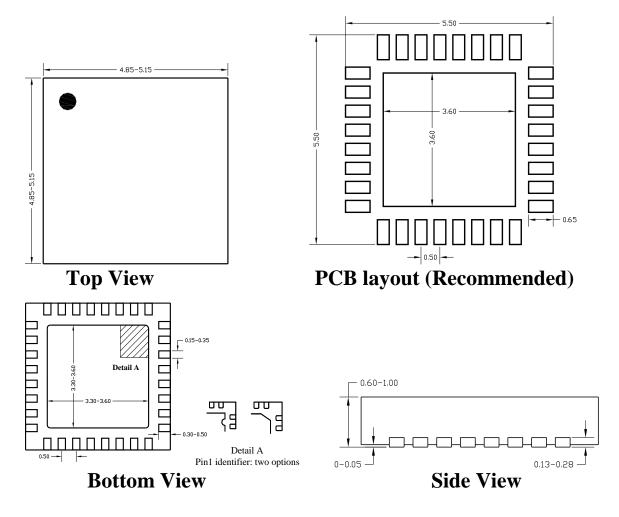
Electrical Characteristics

 $(T_A = 25^{\circ}C, V_{DD=}18V, R_L=4\Omega, Gain=26dB, unless otherwise specified)$

Parameter DC Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit	
AVDD, PVDD	V _{DD}		5.6		26	v	
	V DD	SDZ=high, no load or filter (Note 4)	5.0	28.5	20		
		SDZ=high, with snubber and				mA	
Quiescent Supply Current	IQ	LC:10 μ H+680nF(Note 4)		37.7			
		SDZ=Low, no load		100	122	μA	
		SDZ, SYNC, MUTE, AM2, AM1,	2.05			-	
High-level Input Voltage	V _{IH}	AM0	2.05			V	
		MODSEL (Note 4)	1.75			1	
		SDZ, SYNC, MUTE, AM2, AM1,			0.75		
Low-level Input Voltage	V _{IL}	AM0			0.75	V	
		MODSEL (Note 4)		1			
Land land Output Valta as	V	FAULTZ, RPULL-UP=100k,		0.22			
Low-level Output Voltage	Vol	PVDD=26V		0.22		V	
		MODESEL, MUTE, AM2, AM1,	0.1		0.1		
High-level Input Current	I _{IH}	AM0, $V_I = 2V$	-0.1		0.1	μΑ	
		SDZ, $V_I = 2V$	4	6	8	1	
Drain-Source On-State Resistance	RDS(ON)			60		mΩ	
	G	R1=Open, R2=5.6kΩ, no load		20		. <u>.5</u> dB	
		(Note 4)		-			
\mathbf{C}		R1=100k Ω , R2=20k Ω , no load	25.5	26	26.5		
Gain(Master)		R1=100k Ω , R2=39k Ω , no load (Note 4)		32			
		$R1=75k\Omega$, $R2=47k\Omega$, no load					
		(Note 4)		36			
		$R1=51k\Omega$, $R2=51k\Omega$, no load	20				
		(Note 4)		20			
	~	R1=47k Ω , R2=75k Ω , no load		26			
Gain(Slave)	G	(Note 4) R1=39k Ω , R2=100k Ω , no load			dB		
		(Note 4)		32			
		$R1=16k\Omega$, $R2=100k\Omega$, no load	35.5	36	36.5	-	
Turn-on Time(Note 4)	ton	SDZ=High		45		ms	
Turn-off Time(Note 4)	t _{OFF}	SDZ=Low		1		μs	
		V _{IN} =0Vrms, Measured Differentially		1.5	1.7		
Output Offset Voltage	Vos	at $V_{DD} = 18V$		1.5	15	mV	
Gate Drive Supply	GREG	SDZ=2V, V _{IN} =0Vrms	3.2	3.4	3.6	V	
		AM2=0,AM1=0,AM0=0	350	400	428		
		AM2=0,AM1=0,AM0=1	437.5	500	535		
		AM2=0,AM1=1,AM0=0	525	600	642		
PWM Frequency	f _{PWM}	AM2=0,AM1=1,AM0=1	875	1000	1070	kHz	
1 whith requeitey	1P W W	AM2=1,AM1=0,AM0=0	1050	1200	1284	KIIZ	
		AM2=1,AM1=0,AM0=1	Reserved				
		AM2=1,AM1=1,AM0=0	Reserved				
		AM2=1,AM1=1,AM0=1	Reserved				
AC Characteristics(Note 4)	1					1	
Output Integrated Noise	Vn	20Hz to 22kHz, A-weighted filter, Gain=20dB		65		μV	
	1	Max output at THD+N<1%,					
Signal to Noise Ratio	SNR	$V_{DD}=6V$, f=1kHz, Gain=20dB, A-		96		dB	
		weighted					

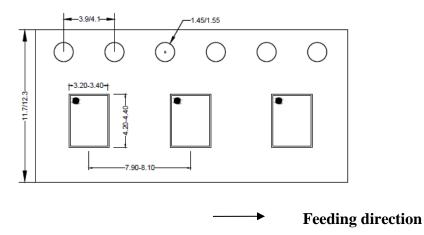
SILERGY							
		Max output at THD+N<1%, V _{DD} =12V, f=1kHz, Gain=20dB, A- weighted		102			
		Max output at THD+N<1%, V _{DD} =18V, f=1kHz, Gain=20dB, A- weighted		106			
		Max output at THD+N<1%, V _{DD} =24V, f=1kHz, Gain=20dB, A- weighted		108			
		Max output at THD+N<1%, VDD=18V, f=1kHz, Gain=20dB, A-weighted, $R_L=8\Omega$		106			
		V _{DD} =6V, f=1kHz, Po=1W		0.04			
		V _{DD} =12V, f=1kHz, Po=1W		0.033			
		V _{DD} =12V, f=1kHz, Po=7.8W		0.07		%	
		V _{DD} =18V, f=1kHz, Po=1W		0.028			
		V _{DD} =18V, f=1kHz, Po=17W		0.279			
Total Harmonic Distortion + Noise	THD+N	V _{DD} =24V, f=1kHz, Po=1W		0.025			
		V _{DD} =24V, f=1kHz, Po=30W		0.456			
		$V_{DD}=18V$, f=1kHz, R _L =8 Ω ,		0.012			
		Po=1W		0.012			
		$V_{DD}=18V$, f=1kHz, R _L =8 Ω , Po=9.5W		0.059		1	
		V _{DD} =6V, f=1kHz, 1% THD+N		3.9			
	Ро	V _{DD} =6V, f=1kHz, 10% THD+N		4.9			
		V _{DD} =12V, f=1kHz, 1% THD+N		15.6			
		V _{DD} =12V, f=1kHz, 10% THD+N		19.7			
		V _{DD} =18V, f=1kHz, 1% THD+N		35		-	
Output Power		V _{DD} =18V, f=1kHz, 10% THD+N		43.7		W	
		V _{DD} =24V, f=1kHz, 1% THD+N		61			
		V _{DD} =18V, R _L =8Ω, f=1kHz, 1% THD+N		19.3			
		V _{DD} =18V, R _L =8Ω, f=1kHz, 10% THD+N		24		1	
Power Supply Rejection Ratio	PSRR	200mV _{PP} ripple, f=1kHz, Gain=20dB		-64.5		dB	
Protection							
V _{DD} Under Voltage Lockout	VUVLO_RISE	V _{DD} Rising		5.5	5.6	V	
Voltage	VUVLO_FALL	V _{DD} Falling	4.9	5.2	5.3	V	
V _{DD} Over Voltage Lockout Voltage	VOVLO_RISE	V _{DD} Rising	0.5 -	31	32.5	V	
ç ç	Vovlo_fall	V _{DD} Falling	26.5	28		V	
Short Circuit Protection Current Limit (Note 4)	I _{SC}			28		А	
Thermal Shutdown Temperature (Note 4)	T _{SD}			150		°C	

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

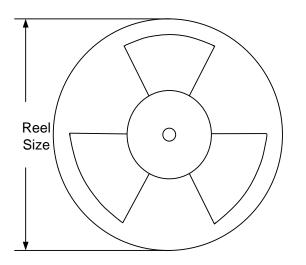

Note 2: DC voltage rating could be derated a little according to the possible switching spike on switching node if the snubber is not appropriate enough.

Note 3: θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

Note 4: Typical test value on demonstration board, guarantee by design.



Notes: All dimension in millimeter and exclude mold flash & metal burr



Taping & Reel Specification

1. QFN5×5 taping orientation

2. Carrier Tape & Reel specification for packages

Package	Tape width	Pocket	Reel size	Trailer	Leader length	Qty per
types	(mm)	pitch(mm)	(Inch)	length(mm)	(mm)	reel
QFN5x5	12	8	13''	400	400	5000

Others: NA.

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Date	Revision	Change		
Apr.25, 2023	Revision 1.0	Production Release		
Apr.25, 2022	Revision 0.9A	 modify the MUTE PIN description as: Mute pin (High=mute, Low=unmute), TTL logic levels with compliance to AVDD. modify the SDZ PIN description as: Shutdown pin (low = enter shutdown, high = exit shutdown). TTL logic levels with compliance to AVDD. 		
Jan. 5, 2017	Revision 0.9	Initial Release		

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. **No offer to sell or license**. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2022 Silergy Corp.

All Rights Reserved.