

SY22312CS42-J10 11-Channel Multi-Spectrum Sensor

General Description

The SY22312CS42-J10 is an 11-channel multi-spectrum light sensor, for the spectrum identification and color matching applications. The SY22312CS42-J10 can detect eight channels which cover visible range from 380nm to 780nm, along with Flicker channel to detect low frequency ambient light flicker.

The SY22312CS42-J10 also integrates a near infrared channel which can sense the 800~1100nm infrared light. The NIR channel combined with all other visible channels can provide surrounding ambient light information and help to distinguish light source type. The flicker sensing engine can calculate whether it is 100Hz or 120Hz via relative flag bit through internal algorithm and can also buffer data to calculate the flicker frequency through the external logic algorithm.

The SY22312CS42-J10 provides a separate pin for various types of interrupt schemes, which simplifies system design complexity by eliminating the need to poll sensor readings. A SMBus compatible with I²C interface is also integrated for easy connection to a microcontroller or embedded controller.

The SY22312CS42-J10 featuring high SNR performance, high data uniformity, user-friendly interface and wide operating temperature range, is suitable for batterypowered equipment with the requirements of ambient light sensing and proximity sensing.

Features

- Spectral Sensing
 - 16-bit Resolution for all Channels
 - Wide Detection Range: Larger than 100k lux
 - Indoor Light Source Flicker Noise Rejection (50Hz and 60Hz)
 - Programmable Integration Time and Gain Settings from 1x to 2048x
- CCT (Correlated Color Temperature)
 - Detection CCT Range from 2000k to 13000k
- Flicker
 - 16 Bit Resolution
 - Sensitivity Less than 1lux/count, Detection Range from 1 to 10k lux
 - Sampling Rate Higher than 2kHz, can Detect Flicker from 50Hz to 400Hz
 - FIFO Depth 512 bytes
- Interrupt Source Selectable, FIFO Buffer Depth can also Generate an Interrupt
- Operation Range
 - 1.7V-2.0V
 - 490µA (typ.) for Normal Operation Mode, 5µA (typ.) Shutdown Current
 - -40°C to +85°C Operating Temperature
- Package Information
 - Size: 3.1mm×2.0mm×1.0mm

Typical Application

Note 1: Capacitors shall be placed as close as possible to V_{DD} pin.

Note 2: LDR pin can be floated. Recommend to be connected to GND if not used.

Ordering Information

Part Number	Package Type	Top Mark	MSL	Delivery Quantity
SY22312CS42-J10	LGA3.1x2.0-8 RoHS-Compliant and Halogen-Free	N/A	3	3000 pcs/reel

Pinout (Top View)

Top Mark: 1C1xyz (Device code: 1C1, x=year code, y=week code, z=lot number code)

Pin No.	Pad Name	Pin Description
1	VDD	Positive supply: 1.7V to 2.0V.
2	SCL	I ² C clock line. The I ² C bus lines can be pulled from 1.7V to above VDD, 3.6V max.
3	AGND	Ground. All voltages are referenced to AGND/PGND and both ground pins must be connected to ground.
4	LDR	LED current sink input.
5	PGND	Ground. All voltages are referenced to AGND/PGND and both ground pins must be connected to ground.
6	NC	No connection.
7	INTn	Interrupt output with open-drain configuration, active low level.
8	SDA	I ² C data line. The I ² C bus lines can be pulled from 1.7V to above VDD, 3.6V max.

Block Diagram

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Min	Unit	
Supply voltage	V _{DD}	-0.3	2.3	
I ² C Bus Voltage	Vı ² c	-0.3	4	V
INTn and driving terminal Voltage	Vinta, Virdrv	-0.3	4	
HBM (Human Body Model)		±2		kV
CDM (Charged Device Model)	±500			

Recommended Operating Conditions (Note 3)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{DD}	1.7		2.0	V
Storage Temperature	T _{STG}	-40		+100	°C
Operating Temperature	TOPR	-40		+85	°C

Electrical and Optical Characteristics

V _{DD} = 1.8V. T _A = 25°C. unless otherwise specified (Note 4

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage Range	VDD		1.7	1.8	2.0	V
Supply Current when Powered down	IDD_SD	Spectral sensing disabled, Flicker sensing disabled	-	5	20	μA
Supply Current Spectral in	IDD_Spectral sensor	Spectral sensing enabled, Flicker sensing disabled	338	450	563	μA
Normal Mode	IDD_Total	Spectral sensing and Flicker sensing enabled	368	490	613	
Flicker Channel Integration Time	Т	FLK_INT_TIME=16ms	15.2	16	16.8	ms
Full Scale of Spectral Sensor Output	DATA_FS	ALS_INT_TIME>=12.5ms	-	-	65535	counts
C1_count(Wp423nm)	DATA_C1		1989	2550	3111	
C2_count(Wp448nm)	DATA_C2	IT=50ms, Gain=1024x, Spectral sensing	10199	13076	15953	oounto
C3_count(Wp468nm)	DATA_C3	enabled, White LED 2700K, Ev=200lux	2404	3082	3760	counts
C4_count(Wp516nm)	DATA_C4		4541	5822	7103	

CE count(MpE4Epm)	DATA CE		22100	26077	10565	
	DATA_CO	-	33109	30011	40303	-
	DATA_CO		12002	110010	20140	-
C7_count(vvp626nm)	DATA_C7	-	9233	11838	14442	-
C8_count(VVp685nm)	DATA_C8	-	624	800	976	-
NIR_count(Wp850nm)	DATA_NIR		353	453	553	
Flicker_count(Wp525nm)	DATA_Flicker	IT=1ms, Gain=4x, White LED 2700K, Ev=200lux	541	795	1050	
Channel Ratio of C1/C2			0.1755	0.1950	0.2145	
Channel Ratio of C2/C5			0.3191	0.3546	0.3900	
Channel Ratio of C3/C2			0.2121	0.2357	0.2593	
Channel Ratio of C4/C2		IT=50ms, Gain=1024x, Spectral sensing	0.4007	0.4452	0.4898	
Channel Ratio of C6/C2		enabled, White LED 2700K, Ev=200lux	1.1367	1.2630	1.3893	
Channel Ratio of C7/C2			0.8148	0.9053	0.9959	
Channel Ratio of C8/C2			0.0538	0.0612	0.0685	
Channel Ratio of NIR/C2			0.0305	0.0346	0.0388	
	C1 channel		-35		35	
	C2 channel	IT=100ms, Gain=1024x, Spectral sensing	-25		20	
	C3 channel	enabled, Ev=0lux. Calculated by algorithm	-25		25	
Dark Count	C4~C8. NIR	or by actual test(C8 and NIR channels)	4.5		4.5	counts
	channels		-15		15	
	Flicker channel	FLK_IT=64ms,FLK_Gain=32x,Spectral sensing enabled, Ev=0lux	-45		45	
	C2~C7,C8, NIR	1024x/512x,512x/256x,256x/128x,128x/64 x 64x/32x 32x/16x	1.8	2.0	2.2	
	C2~C7,C8, NIR	2048x/1024x	1.7	2.0	2.3	
Gain Ratio	channels gain ratio					
Gain Ratio	C1 channel gain	512x/256x,256x/128x,128x/64x,64x/32x,32	1.8	2.0	2.2	
		X/10X				
	C1 channel gain ratio	2048x/1024x,1024x/512x	1.7	2.0	2.3	

I²C Electrical Specifications $V_{DD} = 1.8V$, $T_A = 25^{\circ}C$, unless otherwise specified (Note 2)								
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Supply Voltage Range for I ² C Interface	Vı ² c		1.7	-	3.6	V		
SCL Clock Frequency	f _{SCL}		-	-	1000	kHz		
Low Level Input Voltage of SCL and SDA	VIL		-	-	0.55	V		
High Level Input Voltage of SCL and SDA	Vih		1.25	-	-	V		
SDA Current Sinking Capability	I _{SDA}	$V_{OL} = 0.4V$	2.7	5	-	mA		
Hysteresis of Schmitt Trigger Input	V_{hys}		0.05 V _{DD}	-	-	V		
Low-level Output Voltage of SDA	Vol	I _{OL} =4mA	-	-	0.4	V		
Input Leakage for SDA, SCL	li		-10	-	10	μA		
Pulse Width of Spikes Suppressed by the Input Filter	tsp		-	-	50	ns		
SCL Falling Edge to SDA Output Data Valid	t _{AA}		-	-	0.9	μs		
Capacitance for Each SDA and SCL Pin	Ci		-	-	10	pF		
Hold Time (repeated) START Condition	t hd:sta		0.26	-	-	μs		
Low Period of the SCL Clock	t _{LOW}		0.5	-	-	μs		
High Period of the SCL Clock	tніgн		0.26	-	-	us		
Set-up Time for a Repeated START Condition	t _{SU:STA}		0.26	-	-	μs		
Data Hold Time	t hd:dat		0	-	-	ns		
Data Set-up Time	tsu:dat		50	-	-	ns		
Set-up Time for STOP Condition	tsu:sto		0.26	-	-	μs		
Bus Free Time between a STOP and START Condition	t _{BUF}		0.5	-	-	μs		
Rise Time of Both SDA and SCL	t _R		-	-	120	ns		
Fall Time of SDA and SCL	t _F		-	-	120	ns		
Capacitive Load for Each Bus Line	Cb		-	-	0.55	nF		
SDA and SCL System Bus Pull-up Resistor	R _{pull-up}	Maximum is	-	10	-	kΩ		

		determined by t_R and t_F (Note 5)				
Data Valid Time	t _{vd:dat}		-	-	0.45	μs
Data Valid to Acknowledge Time	tvd:ack		-	-	0.45	μs
Noise Margin at the LOW Level	VnL		0.1Vdd	-	-	V
Noise Margin at the HIGH Level	VnH		$0.2V_{DD}$	-	-	V

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: The I²C bus protocol was developed by Philips (now NXP). For a complete description of the I²C protocol, please review the NXP I²C design specification at <u>http://www.i2c-bus.org/references/</u>.

Note 3: The device is not guaranteed to function outside its operating conditions.

Note 4: Unless otherwise stated, limits are 100% production tested under pulsed load conditions such that TA \cong TJ = 25C.

Limits over the operating temperature range (See recommended operating conditions) and relevant voltage range(s) are guaranteed by design, test, or statistical correlation.

Note 5: Guaranteed by design or statistical correlation and not production teste

Register Map

The SY22312CS42-J10's I²C target address is 0x46. Below is the register map details of sensor.

Table 1. Registers and Register Bits

REG	REG Namo		Bit							
Addr	REG Name	7	6	5	4	3	2	1	0	Default
0x00	COM_TEST				Chip ID					0x32
0x01	ALS_CON1	ADC5_EN	ADC5_EN ADC4_EN ADC3_EN ADC2_EN ADC1_EN Reserved						0x00	
0x02	ALS_CON2		ALS_INT_T	IME[3:0]			ALS_GA	IN[3:0]		0x00
0x03	ALS_CON3	ALS_MOD	DE[1:0]	MODE1_IN T_TIME	Reserved		MODE1_C	YC[3:0]		0x00
0x04	ALS_CON4		Reserved			MOD	E2_CYC[4:0]]		0x00
0x05	ALS_CON5			Must V	Vrite 0x93 to th	is register				0x00
0x06	ALS_CON6	FLK_EN	FL	K_INT_TIME[2	::0]	Reserved	F	LK_GAIN[[2:0]	0x00
0x07	AINT_CON	AINT_EN	Reserved		AINT_SOU	RCE[3:0]		AINT_	_PRST[1:0]	0x00
0x08	FINT_CON	FLV_INT_EN	OVERWR_ EN	Reserved	FIFO_CAL _EN	FLK_INT_ EN	FLK_TY PE	FINT_	_PRST[1:0]	0x00
0x0A	DRV_CON	DRV_EN			DR	V_CUR[6:0]				0x00
0x0B	ALS_LTL				ALS_LTL[7:0	D]				0x00
0x0C	ALS_LTH				ALS_LTH[15:	:8]				0x00
0x0D	ALS_HTL				ALS_HTL[7:0	0]				0xFF
0x0E	ALS_HTH				ALS_HTH[15	:8]				0xFF
0x0F	FLK_FIFO_TH		FLK_FIFO_LEVEL[7:0]					0x00		
0x10	C1_DATAL		C1_DATA[7:0]					0x00		
0x11	C1_DATAH		C1_DATA[15:8]					0x00		
0x12	C2_DATAL				C2_DATA[7:	0]				0x00
0x13	C2_DATAH				C2_DATA[15	:8]				0x00
0x14	C3_DATAL				C3_DATA[7:	0]				0x00
0x15	C3_DATAH				C3_DATA[15	:8]				0x00
0x16	C4_DATAL				C4_DATA[7:	0]				0x00
0x17	C4_DATAH				C4_DATA[15	:8]				0x00
0x18	C5_DATAL				C5_DATA[7:	0]				0x00
0x19	C5_DATAH				C5_DATA[15	:8]				0x00
0x1A	C6_DATAL				C6_DATA[7:	0]				0x00
0x1B	C6_DATAH				C6_DATA[15	:8]				0x00
0x1C	C7_DATAL		C7_DATA[7:0]					0x00		
0x1D	C7_DATAH	C7_DATA[15:8]					0x00			
0x1E	CLEAR_DATAL		CLEAR_DATA[7:0]				0x00			
0x1F	CLEAR_DATAH			C	LEAR_DATA[15:8]				0x00
0x20	C8_DATAL				C8_DATA[7:	0]				0x00
0x21	C8_DATAH				C8_DATA[15	:8]				0x00
0x22	NIR_DATAL				NIR_DATA[7	:0]				0x00

0x23	NIR_DATAH				NIR_DATA[15	5:8]				0x00
0x2C	FLK_DATAL		FLK_DATA[7:0]						0x00	
0x2D	FLK_DATAH		FLK_DATA[15:8]						0x00	
0x2F	INT_FLAG	AINT_FLAG	AINT_FLAG ALS_V Unused						0x00	
0x30	FIFO_LVL_CNT				FIFO_LV_CNT	[7:0]				0x00
0x31	FIFO_FLAG	FINT_FLAG	FIFO_E MPTY	FIFO_FULL	Unused	CAL_INT	100HZ_F LAG	120HZ_ FLAG	Unused	0x00
0x33	FIFO_R_CLR				FIFO_R_CNT_	CLR				0xAA
0x34	FIFO_DATAL				FIFO_DATA[7	7:0]				0x00
0x35	FIFO_DATAH				FIFO_DATA[1	5:8]				0x00
0x36	FIFO_R_CNT				FIFO_R_CNT[7:0]				0x00
0x3A	LOG_CODE1		LOG_CODE1[7:0]					0x00		
0x3B	LOG_CODE2	LOG_CODE2[7:0]						0x00		
0x3C	LOG_CODE3				LOG_CODE3[7:0]				0x00

Table 2. Command Code

Bit #	Access	Default	Name	Function / Operation
7				Unused register bits - write 0
6:4				111, special function others, register address
3:0			Register address / Special function register	Special function: 0000:clears FIFO level interrupt flag and FIFO data 0010:clears Flicker calculation interrupt flag(CAL_INT) 0100:clears ALS interrupt flag 1010:restart all ADCs 1101:set registers to default value others: reserved

Chip ID Register (0x00)

This read-only register contains a fixed data 0x32. Read this register through I²C interface to identify the product. It can also help to test whether the communication link is established or not.

Bit #	Access	Default	Name	Function / Operation
7	RW	0x00	ADC5_EN	When specific bit is 1, related ADC is enabled
6	RW	0x00	ADC4_EN	ADC5 for C8/NIR channels
5	RW	0x00	ADC3_EN	ADC4 for C6/C5 channels
4	RW	0x00	ADC2_EN	ADC3 for C4/C7 channels ADC2 for C2/C3 channels
3	RW	0x00	ADC1_EN	ADC1 for C1/CLEAR channels
2:0	RW	0x00	Reserved	Reserved. Write as 0

Table 3. Register 0x01 (ALS_CON1) – ALS Sensing Configuration 1

Table 4. Register 0x02 (ALS_CON2) – ALS Sensing Configuration 2

Bit #	Access	Default	Name	Function / Operation
7:4	RW	0x00	ALS_INT_TIME[3:0]	For bit 7:4 = (see the following) 0000, integration time of color sensing is 1.56ms 0001, integration time is 3.12ms 0010, integration time is 6.25ms 0011, integration time is 12.5ms 0100, integration time is 25ms 0101, integration time is 50ms 0110, integration time is 100ms 0111, integration time is 200ms 1000, integration time is 400ms
3:0	RW	0x00	ALS_GAIN[3:0]	For bit 3:0 = (see the following) 0000, gain setting of C1~C8, CLEAR and NIR ADCs is 2048x 0001, gain is 1024x 0010, gain is 512x 0011, gain is 256x 0100, gain is 128x 0101, gain is 64x 0110, gain is 32x 0111, gain is 16x 1000, gain is 8x 1001, gain is 4x 1010, gain is 1x others, reserved

Table 5. Register 0x03 (ALS_CON3) – ALS Sensing Configuration 3

Bit #	Access	Default	Name	Function / Operation
7:6	RW	0x00	ALS_MODE[1:0]	For bit 7:6 = (see the following) MODE1: Dummy channels are working MODE2:C1~C8, CLEAR and NIR channels are working 00, MODE1 & MODE2 are OFF 01, MODE1 is ON 10, MODE2 is ON 11, MODE1 & MODE2 alternate operation
5	RW	0x00	MODE1_INT_TIME	When =0, integration time for MODE1 is 12.5ms When =1, integration time for MODE1 is 25ms
4	RW	0x00	Reserved	Reserved. Write as 0
3:0	RW	0x00	MODE1_CYC[3:0]	MODE1 operates for (MODE1_CYC+1) cycles and output the last cycle data for dummy data, then switch to MODE2

Table 6. Register 0x04 (ALS_CON4) – ALS Sensing Configuration 4

Bit #	Access	Default	Name	Function / Operation
7:5	RW	0x00	Reserved	Reserved. Write as 0
4:0	RW	0x00	MODE2_CYC[4:0]	For bit 4:0 = (see the following) MODE 2 operates for (MODE2_CYC+1)*2 cycles and then switches to MODE1

Table 7. Register 0x05 (ALS_CON5) – ALS Averaging

Bit #	Access	Default	Name	Function / Operation
7:0	RW	0x00		User MUST write 0x93 to this byte when initialization

Table 8. Register 0x06 (ALS_CON6) – Flicker Configuration

Bit #	Access	Default	Name	Function / Operation
7	RW	0x00	FLK_EN	When =0, Flicker channel ADC is disabled When =1, Flicker channel ADC is enabled
6:4	RW	0x00	FLK_INT_TIME[2:0]	For bit 6:4 = (see the following) 000, integration time of Flicker detection is 0.25ms 001, integration time is 0.5ms 010, integration time is 1ms 011, integration time is 2ms 100, integration time is 4ms 101, integration time is 8ms 110, integration time is 16ms others, reserved
3	RW	0x00	Reserved	Reserved. Write as 0
2:0	RW	0x00	FLK_GAIN[2:0]	For bit 3:1 = (see the following) 000, gain setting of Flicker ADC is 64x 001, gain is 32x 010, gain is 16x 011, gain is 8x 100, gain is 4x 101, gain is 2x 110, gain is 1x others, reserved

Table 9. Register 0x07 (AINT_CON) – Color Sensing Interrupt Configuration

Bit #	Access	Default	Name	Function / Operation
7	RW	0x00	AINT_EN	When = 0, interrupt pin is HZ and irrelevant to AINT_FLAG bit When = 1, interrupt pin shall react according to AINT_FLAG bit
6	RW	0x00	Reserved	Reserved. Write as 0
5:2	RW	0x00	AINT_SOURCE[3:0]	For bit 5:2 = (see the following) 0000, interrupt source is C1 data 0001, interrupt source is C2 data 0010, interrupt source is C3 data 0011, interrupt source is C4 data 0100, interrupt source is C5 data 0101, interrupt source is C6 data 0110, interrupt source is C7 data 0111, interrupt source is CLEAR data 1000, interrupt source is C8 data others, reserved
1:0	RW	0x00	AINT_PRST[1:0]	For bits 1:0 = (see the followings) 00: set AINT_FLAG if 1 reading trips the threshold value 01: set AINT_FLAG if 4 readings trip the threshold value 10: set AINT_FLAG if 8 readings trip the threshold value 11: set AINT_FLAG if 16 readings trip the threshold value

Table 10. Register 0x08 (FINT_CON) – Flicker Interrupt Configuration

Bit #	Access	Default	Name	Function / Operation
7	RW	0x00	FLV_INT_EN	When = 0, interrupt pin is HZ and irrelevant to FINT_FLAG bit When = 1, interrupt pin shall react according to FINT_FLAG bit
6	RW	0x00	OVERWR_EN	When = 0, FIFO data shall be overwritten once all FIFO are filled with new data When = 1, FIFO data shall not be overwritten once all FIFO are filled with new data
5	RW	0x00	Reserved	Reserved. Write as 0

4	RW	0x00	FIFO_CAL_EN	When = 0, internal Flicker calculation is disabled When = 1, internal Flicker calculation is enabled
3	RW	0x00	FLK_INT_EN	When = 0, interrupt pin is HZ and irrelevant to CAL_INT bit When = 1, interrupt pin shall react according to CAL_INT bit
2	RW	0x00	FLK_TYPE	When = 0, Flicker detection target is not 100Hz and 120Hz When = 1, Flicker detection target is 100Hz or 120Hz
1:0	RW	0x00	FINT_PRST	For bits 1:0 = (see the followings) 00: set CAL_INT if 1 reading trips the FLK_type range 01: set CAL_INT if 2 readings trip the FLK_type range 10: set CAL_INT if 4 readings trip the FLK_type range 11: set CAL_INT if 8 readings trip the FLK_type range

Table 11. Register 0x0A (DRV_CON1) – Driver Configuration 1

Bit #	Access	Default	Name	Function / Operation
7	RW	0x00	DRV_EN	When = 0, internal driver is shut down When = 1, internal driver is enabled
6:0	RW	0x00	DRV_CUR[6:0]	These 7 bits configure driving current of internal driver. 3mA * (1+DRV_CUR[6:0]) 0000000, 3mA 0000001, 6mA 1111111, 384mA

Table 12. Registers 0x0B to 0x0E – Interrupt Threshold Registers for Color Sensing

Addr #	Access	Default	Name	Function / Operation
0x0B	RW	0x00	ALS_LTL	Lower byte of ambient light sensing interrupt low threshold
0x0C	RW	0x00	ALS_LTH	Upper byte of interrupt low threshold
0x0D	RW	0xFF	ALS_HTL	Lower byte of interrupt high threshold
0x0E	RW	0xFF	ALS_HTH	Upper byte of interrupt high threshold

Table 13. Register 0x0F (FLK_FIFO_TH) – FIFO Level for Interrupt

Bit #	Access	Default	Name	Function / Operation
7:0	RW	0x00	FLK_FIFO_LEVEL[7: 0]	These 8 bits configure how many cycles of FIFO data are updated before FINT_FLAG is set

Table 14. Registers 0x10 to 0x2D – All Channel Output Data Registers

Addr #	Access	Default	Name	Function / Operation
0x10	RO	0x00	C1_DATAL	Lower byte of Color channel 1 data
0x11	RO	0x00	C1_DATAH	Upper byte of Color channel 1 data
0x12	RO	0x00	C2_DATAL	Lower byte of Color channel 2 data
0x13	RO	0x00	C2_DATAH	Upper byte of Color channel 2 data
0x14	RO	0x00	C3_DATAL	Lower byte of Color channel 3 data
0x15	RO	0x00	C3_DATAH	Upper byte of Color channel 3 data
0x16	RO	0x00	C4_DATAL Lower byte of Color channel 4 data	
0x17	RO	0x00	C4_DATAH	Upper byte of Color channel 4 data
0x18	RO	0x00	C5_DATAL	Lower byte of Color channel 5 data
0x19	RO	0x00	C5_DATAH	Upper byte of Color channel 5 data
0x1A	RO	0x00	C6_DATAL	Lower byte of Color channel 6 data
0x1B	RO	0x00	C6_DATAH	Upper byte of Color channel 6 data

0x1C	RO	0x00	C7_DATAL	Lower byte of Color channel 7 data
0x1D	RO	0x00	C7_DATAH	Upper byte of Color channel 7 data
0x1E	RO	0x00	CLEAR_DATAL	Lower byte of CLEAR channel data
0x1F	RO	0x00	CLEAR_DATAH	Upper byte of CLEAR channel data
0x20	RO	0x00	C8_DATAL	Lower byte of Color channel 8 data
0x21	RO	0x00	C8_DATAH	Upper byte of Color channel 8 data
0x22	RO	0x00	NIR_DATAL	Lower byte of NIR channel data
0x23	RO	0x00	NIR_DATAH	Upper byte of NIR channel data
0x2C	RO	0x00	FLK_DATAL	Lower byte of Flicker channel data
0x2D	RO	0x00	FLK_DATAH	Upper byte of Flicker channel data

Table 15. Register 0x2F (INT_FLAG) – Color Sensing Interrupt Flag

Bit #	Access	Default	Name	Function / Operation
7	RO	0x00	AINT_FLAG	When =0, no color sensing interrupt has occurred since power-on or last "clear"
				When =1, a color sensing interrupt event occurred
				When =0, color data is not updated after enabled or last data
6	RO	0x00	ALS_VALID	reading
				When =1, color data is updated after enabled or last data reading
5:0	RO	0x00	Unused Unused	

Table 16. Register 0x31 (FIFO_FLAG) – FIFO Flag

Bit #	Access	Default	Name	Function / Operation	
7	RO	0x00	FINT_FLAG	When =0, no FIFO level interrupt has occurred since power-on or last "clear" When =1, a FIFO level interrupt event occurred	
6	RO	0x00	FIFO_EMPTY	When =0, no FIFO empty interrupt has occurred since power-on or last "clear" When =1, all data in FIFO are read and FIFO becomes empty	
5	RO	0x00	FIFO_FULL	When =0, no FIFO full interrupt has occurred since power-on or last "clear" When =1, all data in FIFO are fresh that have never been accessed	
4	RO	0x00	Unused Unused		
3	RO	0x00	CAL_INT	When =0, no calculation interrupt has occurred since power-on or last "clear" When =1, a calculation interrupt event occurred	
2	RO	0x00	100HZ_FLAG	When =0, calculated flicker frequency is not within the range of 100Hz +/-10% When =1, calculated flicker frequency is 100Hz (tolerance is +/-10%)	
1	RO	0x00	120HZ_FLAG	When =0, calculated flicker frequency is not within the range of 120Hz +/-8% When =1, calculated flicker frequency is 120Hz (tolerance is +/-8%)	
0	RO	0x00	Unused	Unused	

Table 17. Registers 0x30 & 0x33~0x36 – FIFO Related Registers

Addr #	Access	Default	Name	Function / Operation
0x30	RW	0x00	FIFO_LV_CNT	Number of available FIFO data samples
0x33	RW	0xAA	FIFO_R_CNT_CL	Reading this register will clear FIFO reading counter

			R	(FIFO_R_CNT) in register 0x36
0x34	RW	0x00	FIFO_DATAL	Lower byte of FIFO buffer
0x35	RW	0x00	FIFO_DATAH	Upper byte of FIFO buffer
0x36	RW	0x00	FIFO_R_CNT	Number of data samples which have been read

I²C Read / Write Register Data

The SY22312CS42-J10's I²C target address is 0x46. Figures 1 and 2 graphically depict the protocol of writing or reading register data. The first 8-bit data following the write-operation can be either the register address or special function. Referring to Table 2 for details.

Figure 2. I²C Read-Register-Data Procotol

Typical Characteristics

SILERGY

Package Outline Drawings

Note 1: All tolerances are ± 0.1 mm, unless otherwise noted **Note 2:** Sensing center is at point (x, y) = (2.16, 1.00) **Note 3:** Sensing area: 880µm x 600µm

Note 4: Unit is in mm

•

Packaging Quantity Specifications

• Dimensions of Tape (Unit: mm)

SECTION A-A

Item	Specification	Tol. (+/-)	ltem	Specification	Tol. (+/-)
W	12.00	±0.3	P1	4.00	±0.10
E	1.75	±0.10	P2	2.00	±0.05
F	5.50	±0.05	A0	2.25	±0.10
D0	1.50	+0.1/-0.0	B0	3.40	±0.10
D1	1.50	+0.1/-0.0	K0	1.30	±0.10
P0	4.00	±0.10	Т	0.30	±0.05

Recommended Method of Storage

Storage is recommended as soon as the bag has been opened to prevent moisture absorption. The following conditions should be observed if bags are not available:

- Storage temperature: 10°C to 30°C.
- Storage humidity: ≦60%RH max.
- Storage Time: ≦168hr max.

Moisture-Proof Package

To avoid moisture absorption by the resin, the product should be stored under the following conditions:

- Temperature: 23 ± 5°C.
- Relative humidity: 60% (max).
- Baking is required if the devices have been stored unopened for more than 24 months and the HIC card is not discolored.

ESD Precaution

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the anti-static bag. Electro-Static Sensitive Devices warning labels are on the package.

Make any necessary soldering correction manually

- Temperature shall be no more than 350°C (25W for soldering iron) within 3 seconds.
- Make sure do not do this more than one time for any given pin.

Recommended Soldering Profile

Note 1: Do not put stress on the devices during heating stage while soldering.

Note 2: Do not warp the circuit board after soldering.

Revision History

The revision history provided is for informational purpose only and is believed to be accurate, however, not warranted. Please make sure that you have the latest revision.

Revision Number	Revision Date	Description
1.0	Dec 20, 2023	Initial Release
1.0	Nov.04,2024	Language Improvements for clarity

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any application. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. No offer to sell or license. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2023 Silergy Corp.

All Rights Reserved.